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Technical Notes and Correspondence

Remote Control Over Noisy Communication Channels: A
First-Order Example

Sridevi V. Sarma and Munther A. Dahleh

Abstract—In this note, we consider a set up in which the plant and con-
troller are local to each other, but are together driven by a remote refer-
ence signal that is transmitted through a noisy discrete channel. Our goal
is to design codeword lengths of block source and channel encoders, and
a controller to meet a model matching performance objective. Such design
problems are difficult in general, as there is a strong interplay between con-
trol objectives and communication constraints, which forces the synthesis
of controllers and encoder-decoder pairs to be done simultaneously. Cur-
rent approaches typically fix one, while the other is designed to meet some
objective. We first construct a model matching performance metric that
captures the tradeoffs between coding the reference command to achieve
more accuracy at the remote site and designing a controller to meet per-
formance. We then simultaneously synthesize the controller and encoder
codeword lengths that meet the specified objective for a first-order plant
and model case. Finally, we illustrate performance sensitivity to the poles
of the plant and model, and to the channel noise.

Index Terms—Channel decoder, channel encoder, communication
channel, remote control, source encoder.

I. INTRODUCTION

Due to the information-rich world we live in today, control in dis-
tributed, asynchronous, networked environments is in demand. Com-
munication links that have rate limitations, delays, and that are noisy,
are now connected to control systems, and the interactions between the
two cannot be ignored.

In this note, we consider the simple network, shown in Fig. 1, in
which a plant and controller are both remote and separated from the ref-
erence command by a discrete communication channel. There is much
work that focuses on the reconstruction of the reference command at
the remote site (see [11] and the references therein). However, here we
are interested in driving a remote system with the reconstructed com-
mand. Teleoperation systems, which often involve hazardous and un-
structured tasks, can be addressed under this framework. Examples of
such tasks include nuclear reactors, space applications, medical oper-
ations, and deep-sea and deep-space explorations [8]. Previous work
involving communication constraints in teleoperation systems, mainly
consider noiseless channels that simply add delays. When the delays
are assumed to be constant, then the local and remote operators com-
pute wave-variable transformations [9] and/or are delay compensators
[1], which transform the channel into a passive connection, thereby en-
suring stability under any delay. Smith predictors [5] at the local end
are also applied to achieve performance. When the delays are assumed
to be time-varying but bounded from above, then buffering techniques
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[6] can be applied. Finally, if the channel also erases some signals
(e.g., packet losses), then one can develop a model of the channel using
second-order statistics [2], or build an observer at the remote operator
to reconstruct the data stream at the channel output [7] to maintain sta-
bility and performance.

Our approach views the local operator as a channel encoder, and the
remote operator as a channel decoder (as defined in information theory
[4]) to minimize errors between the actual and reconstructed command.
We then parameterize all stabilizing controllers as a function of encoder
and decoder parameters to ultimately design coding schemes and con-
trollers to meet a specific performance objective. Therefore, our work
combines information theory and robust control tools.

The performance metric that we construct illustrates the tradeoffs
between sending the remote control system an accurate reference com-
mand, and designing a controller such that the remote system matches a
given ideal transfer function. The longer the code lengths representing
the input signal before it enters the channel, the more accurate the signal
is that drives the remote control system. However, delays in receiving
commands at the remote site negatively affect performance. We then
simultaneously synthesize the controller and encoder lengths that meet
specified model matching objectives, and the plant and ideal model are
both first-order single-input–single-output (SISO) systems. In general,
synthesis of each cannot be done separately due to the tight interplay
between the communication link and control system. Finally, we illus-
trate performance sensitivity to the poles of the plant and model, and
to the channel noise.

II. PROBLEM FORMULATION

A. Setup

In this note, we ignore the feedback loop and only consider how
the channel impacts performance in a feedforward setting. This makes
sense when one is navigating “slowly.” That is, a command is sent to
a remote system when it is at rest and then it “moves” accordingly.
Feedback as to where the system has moved to is given, but at a slower
time-scale. Real-time feedback and navigation will be addressed in fu-
ture work.

We consider the set up shown in Fig. 2, where
• r 2 Cr , where Cr is a given set of reference signals in lp with

finite covering fCr;1; Cr;2; . . . ; Cr;Lg, i.e., [Li=1Cr;i = Cr; and a
unique representative signal r�j 2 Cr;j for each j [see Fig. 3(a)];

• R : Cr ! Ir maps a signal in Cr;j to the index j 2 Ir =
f1; 2; . . . ; Lg which represents the signal r�j ;

• SE : f1; 2; . . . ; Lg ! f0; 1glog (M) is a source encoder that
compresses information about the input signals (M � L), i.e.,
SE defines a partition on the signal set fB1;B2; . . . ;BMg such
that [Mi=1Bi = Cr and Bi \ Bj = � for all i 6= j, i; j 2
f1; 2; . . . ;Mg [see Fig. 3(b)];

• CE : f0; 1glog (M) ! f0; 1; . . . ; kgN is a channel encoder
that adds redundancy by mapping log2(M) bits to N bits where
N � log2(M);

• C: is a discrete memoryless channel, that transmits one bit per
time step, with input domain XN 2 f0; 1; . . . ; kgN , range
WN 2 f0; 1; . . . ; jgN , and corresponding conditional proba-
bility distribution PN (wjx);

• CD: is a channel decoder that maps WN ! f0; 1glog (M) to
minimize the probability of decoding error, P (� 6= �̂);
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Fig. 1. Simple feed-forward network.

Fig. 2. Problem setup.

Fig. 3. Signal set, covering and representative signals, and source encoder par-
tition.

• SD : f0; 1glog (M) ! Cr first maps the estimate �̂ to one of
the M partitions Bi and then selects one of the reference signal
centroids r�j 2 Bi to send to the remote system1;

• K is a causal, discrete-time, SISO controller;
• G is an unstable causal, discrete-time, SISO plant.

Note thatG andC , are fixed, while SE,CE, andK are left for design.
Both decoders are functions of the encoding schemes and are fixed once
SE and CE are determined.

Before constructing a performance metric, we define two parame-
ters that depend on the source encoding scheme and the set Cr which
provide bounds on the error kr � r̂kp

1) �max(Cr) = maxi2f1;2;...;Mg, rj 2 Cr krj � r�i kp;
2) �min(Cr; SE) = maxi2f1;2;...;Mgmaxr 2B krk � r�i kp.
If the codeword (�) for the index that represents the signal being sent

is correctly decoded, i.e., � = �̂, then the worst error between r and r̂
is �min(Cr): On the other hand, if � 6= �̂, then the worst error between
r and r̂ is �max(Cr).

To gain some insight into �min, we consider the following two ex-
treme cases. If the channel is ideal with no noise, then source coding
is not necessary, which is equivalent to M = L and SE = I: In this
case, �min = 0. If, on the other hand, the source encoder compresses
all L signals into one “ball” or cover, i.e., M = 1, then �min = �max.
In general, �min(Cr; SE) is a function that monotonically decreases as
M increases, and its shape depends entirely on the source encoder com-
pression algorithm and the set of reference signals. Going forward, we
suppress �min’s dependence on Cr , and SE and �max’s dependence
on Cr , for an easier read.

1We assume that the source decoder carries in its memory a bank of L refer-
ence signals in C , and that it activates one of them when it receives ^�.

Fig. 4. Simpler setup.

B. A Simpler Setup

In this section, we present a simpler representation of the detailed set
up described previously. It turns out, as we will see in Section II-C, that
performance with respect to the channel in our original set up (Fig. 2)
is equivalent to performance in the following simpler set up shown in
Fig. 4.

In Fig. 4, we see that the reconstructed command, r̂, is just a noisy
delayed version of r. However, the noise and the delay are not inde-
pendent of each other. The noise depends on the channel, the source
resolution M , and the channel encoding length N , and the delay de-
pends on M and N . Note also that H = (I +GK)�1GK .

In this simple setup, we characterize the noise as follows. For a given
channel, k�kp � � , where � is a random variable such that

� =
�max Prob(� 6= �̂)

�min Prob(� = �̂).

Prob(� 6= �̂) depends onN ,M , and the channel as will be described
in Section II-E. To obtain the above model of the noise’s upper bound,
we consider two scenarios. If the codeword for the index that represents
the signal being sent is correctly decoded, i.e., � = �̂, then the worst
error between r and r̂ is �min. On the other hand, if � 6= �̂, then the
worst error between r and r̂ is �max.

The delay � = log2(M) + N is due to the delay in transmitting
a total of log2(M) + N bits through the channel, which has a rate of
transmitting one bit per time step. We proceed with constructing our
performance objective using this simpler representation.

C. Model Matching Performance Metric

In classical synthesis problems, we may be interested in designing
K such that H is “close” to some given ideal model transfer function
T . That is, we solve the following problem:

min
K

kH � Tkp�ind

s:t: H is stable:

Here, we consider the following modified problem that takes into
account the communication link in our setup:

min
K

max
r2C

Efd(ŷ; yideal)g(
�)

s:t: H is stable

where d(ŷ; yideal) = kHr̂� Trkp: If we let H� = z��H (a delayed
version ofH), we then get that d(ŷ; yideal) kHr̂�Trkp= kH�(r+
�)� Trkp = k(H�� T )r+H��kp, where � is the noise signal. We
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Fig. 5. Upper bound on probability of decoding error: BSC.

now take the expectation of the distance function d with respect to the
noise upper bound �, and get

E�(d) =P (� = �̂)k(H� � T )r +H���=� k
+ P (� 6= �̂)k(H� � T )r +H���=� k

�P (� = �̂)fk(H� � T )rk+ kH�k�ming
+ P (� 6= �̂)fk(H� � T )rk+ kH�k�maxg

�kH�kf�min + (�max � �min)P (� 6= �̂)g
+ k(H� � T )kr (1)

where r = maxi=1;...;L kr�i kp.
From [4, p. 135], we recall that an upper bound on the average prob-

ability of decoding error when one of M messages enter the channel
encoder whose output is N bits and mapping arbitrary, P (� 6= �̂),
given any discrete memoryless channel is

P (� 6= �̂) � (M � 1)�
1

k

j

l=1

k

m=1

p(ljm)1=1+�
1+� N

!

where 0 � � � 1. We exhaustively search for � that minimizes this
upper bound for our example described later. It is important to note
that the upper bound decays quickly as N increases2 when the channel
has less noise. For example, we compute the bound for the binary sym-
metric channel (BSC) [4] in Fig. 5 for different noise levels, where p is
the probability of an error.

Finally, we plug in the upper bound, !, into inequality (1) and get

E�(d) � k(H� � T )k � r + kH�k�

where � f�min + (�max � �min)!g.

2We note that w decreases as N increases only if the channel encoder rate,
(log (M)=N), is less than the Shannon Capacity of the Channel, C [4]. The
channel encoder rate is defined as the number of input symbols entering CE
divided by the number of output symbols leaving CE

Fig. 6. Tradeoff of each cost component as N increases.

D. Tradeoffs Between Communication and Control Objectives

We now make some high-level observations on components of the
upper-bound of E�(d) computed previously as the code lengths vary

• k(H� � T )k � r: increases as a function of N + log2(M);
• kH�k�: generally increases if log2(M) increases and decreases

if N increases.
Overall, if M is fixed (�min is fixed) and N increases, the estimate

of the reference signal improves, but the delay of the control system
receiving r̂ increases. Roughly speaking, k(H� � T )k � r increases
while kH�k� decreases. See Fig. 6 for an example. On the other hand,
ifN is fixed andM increases, then the source encoder more accurately
represents the input signals (less compression), but the probability of
decoding error increases as there are more possible messages that can
be sent through the channel. In addition, delay of the control system
receiving r̂ increases with log2(M). Mathematically speaking, �min
decreases and hence � increases resulting in kH�k� increasing, while
k(H� � T )k � r increases but at a slower logarithmic rate.

These observations indicate that there may exist a pair of code
lengths M and N that will minimize the upper bound on the perfor-
mance cost E�(d). We set out to quantify these tradeoffs and optimal
code lengths.

E. Problem Statement

In this section, we state questions that we are interested in answering
for the aforementioned setup. We assume that the reference signals in
Cr lie in l2, and the output signals lie in l1: Thus, the induced norm
between the input r 2 Cr , and output ŷ, is upper-bounded by the H2

norm of the network.
We observe that

E�(d) �k(H� � T )kH � r + kH�kH � �
�
p
2 k(H� � T )k2

H
� r2 + kH�k2H � �2

=
p
2 k [ (H� � T )r H�� ] kH :

To get the second inequality shown previously, we let jg1j k(H� �
T )kH � r, jg2j kH�kH � �, and then use the fact that jg1j+ jg2j �p
2 jg1j2 + jg2j2.
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Now, instead of solving (�), which, in general, is not easily com-
putable for broad classes of encoders and channels, we seek to mini-
mize the previous upper bound by solving the following problem:

min
K(M;N)

p
2 k [ (H� � T )r H�� ] kH (��)

s:t: H is stable:

Note that if the channel is ideal (w = 0), then no coding is necessary,
which makes �min = 0, and therefore � = 0. The above cost function
then reduces to the traditional model matching cost function.

1) Questions of Interest: Given a causal, unstable, DT, SISO plant,
G, a causal, stable, DT, SISO ideal model, T , a discrete memoryless
channel, C , and a decreasing function �min(M).

1) Solve (��) to synthesize a SISO LTI controller, Ko, as a function
of (M;N).

2) Plug Ko(M;N) back into the performance metric and find the
code lengths, M and N , that minimize the cost function.

3) Describe the sensitivity of the optimal cost to the poles of the plant
and ideal model, and to the channel noise.

III. FIRST-ORDER EXAMPLE

In this section, we consider the special case where
• G(z) = (z=z � a)jaj > 1;
• T (z) = (z=z � �)j�j < 1;
• C is a binary symmetric channel (BSC), shown in Fig. 10, with

bit-flip probability p;

• �min(M) =
�max = 1 M = 1

(1=log2(M)) M � 2.

A. Synthesis of Controller

To synthesize the controller as a function of the code lengths, we first
parameterize the set of all stabilizing controllers of the remote system
H = (I +GK)�1GK [3]. To do so, we first construct one observer-
based controller by finding scalars f and l such that a+af and a+l are
both stable (have magnitude inside the unit disk). We choose f = �1
and l = �a: Then, using the method and notation described in [3], we
get the following coprime factorization over all stable proper rational
functions of the plant G:

F (z) = 1 J(z) =
z � a

z
~Y (z) = 1 ~X(z) =

a

z
where

G(z) =
F (z)

J(z)
& F (z) ~X(z) + J(z)~Y (z) = 1:

Then, all stabilizing controllers are of the form
(( ~X(z) + J(z)Q(z))=(~Y (z)� F (z)Q(z))), for Q(z)
being any proper rational stable function. This gives us the following
closed-loop transfer function:

H(z) = F (z) ~X(z) + F (z)J(z)Q(z) = P (z)� U(z)Q(z)

where P (z) F (z) ~X(z), U(z) �F (z)J(z). The optimization
problem (��), using the parameterization of all stabilizing controllers,
is then equivalent to solving

min
Q(M;N)

p
2kG� SkH

s:t: fS 2 (uQ)V j
Q is a stable proper rational functiong

where G = [ r(z��P � T ) �z��P ]

u = z��U V = [ r � ] :

Fig. 7. Optimal cost versus channel code length (N): (� = 0:95).

Note that we suppress the z-dependence on z-transforms for a more
compact notation (eg. U = U(z)).

Before solving for the optimal So, we recall that any stable proper
rational function can be written as the product of an all-pass filter and
a minimum-phase filter (see [3] for details). We can then factor u as
follows:

u = uapump =
a� z

(a� z�1)(z�+1)
fa� z�1g:

Finally, we define So = uQoV , and as shown in [3]

Qo =
(ump)

�1

V V
� u�1apG H

V
�

:

Recall that [f ]H is the projection of a function f onto theH2 subspace,
and g� denotes the complex-conjugate transpose of a complex-valued
vector function g.

Note that u and V are functions of M and N , therefore, Qo is
also a function of M and N . Finally, the optimal controller, Ko =
(Qo=1�GQo), is a function ofM andN . For our first-order example

Ho(M;N) =
C1z

az � 1
+

C2z

z � �

where C1 = (a� 1=a) [(a=k(a�� 1)) + 1],
C2 = ((�� a)=k(a�� 1)), k = r2 + �2,
 = �� ((a2 � 1)r2=�� a) + ar2 .

B. Synthesis of Code Lengths

Now, that we have the optimal closed-loop transfer function as a
function of code lengths, we look for the optimal (Mo; No) pair that
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Fig. 8. Optimal cost versus channel code length (N): (� = 0:02).

minimizes the cost function
p
2kG � SkH , and the corresponding

optimal closed-loop transfer function Ho. We set a = 1:2, � = 0:95,
p = 0:01, and r = 0:2 and find that the minimum cost is 0.6194 and
occurs when Mo = 32, and No = 13. The corresponding optimal
control system is

H
o =

0:0687z

1:2z � 1
+

0:1693z

z � 0:95
:

C. Performance Sensitivity

In this section, we investigate the sensitivity of the optimal cost to
the poles of the plant and model, and to the channel noise.

Fig. 7 illustrates how the channel code length, N , impacts the op-
timal cost for different unstable plant poles, when � = 0:95 and the
bit-flip probabilities of the BSC are 0.01, 0.2, and 0.4. Fig. 8 illustrates
the optimal cost for different levels of channel noise when � = 0:12.
For these experiments, r = 0:2, and M = 1, while N and a varied.

From Figs. 7 and 8, we make the following observations.
• Sensitivity to plant pole: The optimal code length increases as the

magnitude of the unstable pole increases.
• Sensitivity to channel noise: As the channel noise increases, more

coding is necessary to reach a minimum cost. However, for very
noisy channels, the optimal code length is too long to be of use
when implemented as the delay is too large. In such situations,
recall that our upper bound on the cost, which was obtained using
the upper bound on the probability of decoding error described in
Section II-C, is not useful.

Fig. 9. Ideal optimal cost versus plant pole.

Fig. 10. Binary symmetric channel.

• Sensitivity to ideal model pole: The closer the model pole is to
the unit disk, the more coding improves performance. That is, we
see the tradeoffs between sending the remote system an accurate
reference command and meeting performance.

D. Ideal Solution

In this section, we look at performance sensitivity of the ideal model
matching problem (no channel or coding) by setting � = � = 0. Fig. 9
illustrates how the optimal cost behaves as the plant pole becomes more
unstable (as a ranges from 1.01 to 4.1) for different ideal model poles
(� = 0:95 and 0.02). As shown in Fig. 9, we see that when the ideal
model pole is close to the unit disk, the ideal optimal cost (kH�TkH )
is lowest when a = 4:1. This is consistent with what we see in Fig. 7
for very low channel noise (p = 0:01), which shows that the optimal
cost for a = 4:1 is lowest. However, when the ideal model pole is close
to the origin, the ideal optimal cost is lowest when a = 1:01, which is
also consistent with what we see in Fig. 8 for very low channel noise.

IV. FUTURE WORK

Future work entails making the set up more “real-time” and appro-
priate for navigation of the remote system. In this note, only one ref-
erence signal is sent through the link, and the system waits � time
steps before it receives any signal. A more realistic set up includes
switching the reference signal over time (as a function of real-time
feedback signal), and allowing for r̂ to reach the system without much
delay, and to have it improve (be closer to r) over time as the input
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gets further coded. The latter scheme entails implementing a dynamic
encoding scheme, much like that introduced in [10].
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A Remark on an Example By Teel–Hespanha With
Applications to Cascaded Systems

Alessandro Astolfi

Abstract—The properties of a system, proposed by Teel and Hespanha,
which is globally exponentially stable but with state that can be driven to
infinity by an arbitrarily small exponentially decaying disturbance, are dis-
cussed in detail. These are used to propose a family of systems with a similar
property and to argue that unstable behavior may be nongeneric and not
detected by means of simulations. Finally, sufficient conditions for the ex-
istence of unbounded trajectories in cascaded systems are given.

Index Terms—Cascaded systems, nonlinear systems, stability.

I. INTRODUCTION

In [5], which builds upon the results in [4], the system (system (13)
of [5])

_x1 = g(x1x2)x1

_x2 = � 2x2 + z

_z = � z (1)

where g(�) satisfies Assumption 1 below, has been considered.

Manuscript received October 27, 2004; revised June 1, 2005, January 31,
2006, and July 26, 2006. Recommended by Associate Editor M.-Q. Xiao.

The author is with Department of Electrical and Electronic Engineering, Im-
perial College London, London SW7 2AZ, U.K., and also with the Dipartimento
di Informatica, Sistemi e Produzione, University of Rome “Tor Vergata,” Rome
00133, Italy (e-mail: a.astolfi@imperial.ac.uk).

Digital Object Identifier 10.1109/TAC.2006.889870

Assumption 1: [5, Ass. 1] The function g(s) is such that
i) it is continuous;

ii) jg(s)j � 1 for all s 2 IR;
iii) g(s) = �1 for all s 2 (�1; 1=2] [ [3=2;1);
iv) g(1) = 1.
The authors have shown that if the initial condition

(x1(0); x2(0); z(0)) is such that x1(0) 6= 0, x2(0) = 1=x1(0)
and z(0) = x2(0) then the resulting trajectory is such that
x1(t) = etx1(0), i.e., it is exponentially diverging. This property,
together with the fact that the (x1; x2)-subsystem with z = 0 is
globally exponentially stable, is exploited to conclude that globally
exponentially stable systems may be destabilized by arbitrarily small
and exponentially decaying disturbances. This may not be a surprising
fact, but the illuminating example in [5] shows that it may arise in
very simple systems.

However, the aforementioned class of systems reserves further sur-
prises. To begin with, one may be tempted to see the phenomenon high-
lighted in [5] by means of simulations. This yields the first surprise.

We run Matlab simulations using the ode45 command, setting the
initial condition to (1, 1, 1) and selecting the function1

g(s) =

�1 if s � 1

2

4s� 3 if 1

2
� s � 1

�4s+ 5 if 1 � s � 3

2

�1 if s � 3

2

which is such that Assumption 1 holds. This yields the results in Fig. 1,
displaying the time histories of the state x1(t) for different values of
the “Relative Tolerance” Matlab internal variable (the “Absolute Tol-
erance” has been set to 1/100 the “Relative Tolerance”), together with
the function et. Surprisingly, the state x1 does not behave as theoret-
ically forecast, but follows the signal et for an initial period of time
(which depends upon the simulation parameters), and then converges
exponentially to zero. At this point, after carefully rechecking all the
calculations in [5], and after convincing ourselves that they are correct
(as one would expect), we are left wondering why the forecast insta-
bility is not exposed by the simulation.

We devote the rest of this note to address this question and some
related issues. In particular, we show that system (1) can be simply
modified to display a family of unbounded trajectories, which are also
captured by simulations, and we provide some sufficient conditions for
the existence of unbounded trajectories in a class of cascaded systems.
Note that the problem of existence of unbounded trajectories has also
been studied, for general nonlinear systems, in [2].

II. A CLASS OF SYSTEMS

Consider a system described by equations of the form

_x1 = g(x1x2)x1

_x2 = � 2x2 + z

_z = � �z (2)

where g(�) satisfies Assumption 1, and the following assumption.
Assumption 2: The function g(s) is such that
i) g(s) is C1 for all s 2 (1=2;1) [ (1; 3=2);

ii) g(s) = 1 ) s = 1.
For system (2), the properties outlined in the following statement hold.

Proposition 1: Consider system (2) and assume the function g(�)
satisfies Assumptions 1 and 2.

i) If � > 1, then all trajectories are bounded and converge expo-
nentially to zero.

1Similar conclusions can be drawn with other selections.
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