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Feedback Stabilization of Uncertain Systems in the
Presence of a Direct Link

Nuno C. Martins, Member, IEEE, Munther A. Dahleh, Fellow, IEEE, and Nicola Elia, Member, IEEE

Abstract—We study the stabilizability of uncertain stochastic
systems in the presence of finite capacity feedback. Motivated by
the structure of communication networks, we consider a variable
rate digital link. Such link is used to transmit state measurements
between the plant and the controller. We derive necessary and
sufficient conditions for internal and external stabilizability of the
feedback loop. In accordance with previous publications, stabiliz-
ability of unstable plants is possible if and only if the link’s average
transmission rate is above a positive critical value. In addition,
stability in the presence of uncertainty in the plant is analyzed
using a small-gain argument. We also show that robustness can be
increased at the expense of a higher transmission rate.

Index Terms—Control over networks, limited information, ro-
bust stability.

I. INTRODUCTION

WITH A wide range of formulations, control in the pres-
ence of communication constraints has been the focus

of intense research. The need to remotely control one or more
systems from a central location, has stimulated the study of sta-
bilizability of unstable plants when the information flow in the
feedback loop is finite. Such limitation results from the use of
an analog communication channel or a network digital link as a
way to transmit information about the state of the plant. It can
also be viewed as an abstraction of the computational constraints
created by several systems sharing a common decision center.

Various publications in this field have introduced necessary
and sufficient conditions for the stabilizability of unstable plants
in the presence of data-rate constraints. The construction of a
stabilizing controller requires that the data-rate of the feedback
loop is above a nonzero critical value [13], [21], [23]–[25], [27].
Different notions of stability have been investigated, such as
containability [29], [30], moment stability [17], [18], [21], and
stability in the almost sure sense [26]. The last two are different
when the state is a random variable. That happens when distur-
bances are random or if the communication link is stochastic. In
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[25] and [26], it is shown that the necessary and sufficient con-
dition for almost sure stabilizability of finite dimensional linear
and time-invariant systems is given by an inequality of the type

. The parameter represents the average data-rate at
which information can be reliably transmitted through the feed-
back loop and is a quantity that depends on the eigenvalues
of , the dynamic matrix of the system. Different notions of
stability may lead to distinct requirements for stabilization. For
tighter notions of stability, such as in the th moment sense,
the knowledge of may not suffice. More informative notions,
such as higher moments or any-time capacity [21], are neces-
sary. Results for the problem of state estimation in the presence
of information constraints can be found in [22], [29], and [12].

A. Main Contributions of this Paper

In this paper, we study the moment stabilizability of uncertain
stochastically time-varying systems, assuming that the feedback
loop uses a digital communication link with a stochastically
time-varying rate. In contrast with [16], we consider systems
whose time-variation is governed by an identically and inde-
pendently distributed (i.i.d.) process which may be defined over
a continuous and unbounded alphabet. We also provide com-
plementary results to [7], [10], [16], because we adopt a more
general problem formulation, since we consider external distur-
bances and uncertainty on the plant and a digital communication
link with a stochastically timevarying rate of transmission.1. For
simplicity of exposition, such link is referred to as a direct link.2

We show that robust moment stabilizability requires that the
average transmission rate of the direct link must satisfy

, where , are constants that quantify the in-
fluence of randomness at the direct link and at the plant, respec-
tively. As a consequence, must be higher than to compen-
sate for randomness both at the plant and at the direct link itself.
The conclusion that is not sufficient for moment sta-
bilization, in the presence of a stochastically timevarying rate,
was originally derived by [22]. The work of [22] was an impor-
tant motivation for our work and the treatment of the nominal
moment stabilization, using a parameterized notion of capacity,
denoted as anytime capacity, can be found there. If the plant and
the direct link are deterministic then we get and ,
which is consistent with the condition derived by [24].

1The model for the communication link adopted in this paper is described in
full detail in Section II-A

2The designation “direct link” is adopted in standard texts such as [19]. A
direct link is a digital communication link established between two nodes and
it represents the simplest digital communication network. The aforementioned
direct link may have a stochastically time-varying rate as a result of fading and
collisions[19]
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We also show that model uncertainty in the plant can be toler-
ated. By using an appropriate measure, we prove that an increase
in leads to higher tolerance to uncertainty. All of our condi-
tions for stability are expressed as simple inequalities where the
terms depend on the description of uncertainty in the plant as
well as the statistics of the system and the direct link. The state
feedback stabilization, under a deterministic bit-rate constraint,
of linear and time-invariant systems in the absence of external
excitation and subject to linear and memoryless uncertainty, can
be found in [20]. A different approach to dealing with robust-
ness, with respect to transmission rates, can be found in [11].

Besides the Introduction, this paper has four sections: Sec-
tion II comprises the problem formulation and preliminary def-
initions; in Section III we prove sufficiency conditions by con-
structing stabilizing feedback schemes; a proof of the necessary
condition for stability can be found in Section IV; in Section V
we give a detailed interpretation of certain quantities introduced
in the paper.

The following notation is adopted.

• We reserve to represent discrete time and to
denote continuous time.

• Whenever that is clear from the context we refer to a se-
quence of real numbers simply as . In such cases
we may add that .

• Random variables are represented using boldface letters,
such as .

• If is a stochastic process, then we use to in-
dicate a specific realization. According to the convention
used for sequences, we may denote just as and

as .
• The expectation operator over is written as .
• If is a probabilistic event, then its probability is indi-

cated as .
• We write simply as .
• The set of causal operators between infinite sequences is

represented by . If is an element of
, and then may be written as

.
• If , then and

.
Definition 1.1: (Causal Operators With Pre-Defined Memory

Length): Let be a given constant in the set . The
set of causal operators with memory of, at most, steps is a
subset of defined as

(1)
where the projection is given by

if
otherwise

(2)

Definition 1.2: (Infinity Norm): If is an el-
ement of then we denote its infinity induced norm as .
Formally, is computed as

(3)

II. PROBLEM FORMULATION

We study the moment stabilizability of uncertain stochastic
systems under communication constraints. Motivated by the
type of constraints that arise in most computer networks [19],
we consider the following class of communication links.

Definition 2.1: (Direct Link): Consider a link that, at every
time-step , transmits bits. Such link is well defined pro-
vided that is an independent and identically
distributed (i.i.d.) random process satisfying

(4)

where and . The term represents
a fluctuation in the transfer rate of the link. More specifically,
the link is a stochastic truncation operator

defined as

(5)

A. Further Remarks on the Model of the Direct Link and the
Stochastic Truncation Operator

We start by providing a short overview of the main features
of the most basic network link, which according to [19] is de-
noted as direct link. Subsequently, we explain how the stochastic
truncation operator of Definition 2.1 is a natural abstraction for
a direct link. In [19, Ch. 2] one can find a complete exposition
of this subject, including the historical perspective and nomen-
clature. Our discussion is entirely based on [19], which follows
the open systems interconnection (OSI) architecture.

At the physical level, a direct link connects two nodes without
any routing or intermediate nodes and, for that reason, such con-
nection is considered the building block of any network. The
hardware used depends on the transmission medium, but, at the
software level, communication devices are abstracted as links
that are capable of transmitting messages comprising a finite se-
quence of bits (frame). The protocols that regulate the commu-
nication through direct links are implemented in several layers
according to the OSI architecture. Among the tasks of a com-
munication protocol, the following are the most relevant.

• Framing: Process of breaking a very large message into
a sequence of frames.

• Error detection: Using various techniques, errors within
each frame are detected and, if possible, are corrected.
If correction is not possible then the entire frame is dis-
carded. The probability that a validated frame has errors
is negligible and, in practice, one can assume that a frame
either goes through without errors or is discarded (era-
sure).

• Reliable transmission: By means of appropriate algo-
rithms, the sender and the receiver nodes use a scheme
of acknowledge signals and counters that guarantee mes-
sage delivery in the presence of frame erasure.

• Access control: Avoid conflicts when more than one node
wants to send and/or receive information through the same
link.

Although we are considering the stabilization of discrete time
plants, communication must be planned in continuous time. If
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Fig. 1. Control action and communication inter-sample timeline.

we assume that the discrete time plant represents the dynamics
of a continuous-time plant at sampling instants , then
the time-line depicted in Fig. 1 shows how the intersample time

can be partitioned to accommodate communica-
tion and control action.

At the direct link, we assume the use of the sliding window
algorithm [19], which is one of the most widely known algo-
rithms for reliable transmission. If we reset the sliding window
algorithm at every sampling time and keep it running
during the subsequent communication sub-interval (see Fig. 1)
then the following features are important in the motivation of
our model.

• Frame order and flow control: At every sampling
time , the algorithm is reset and the sender
submits a new sequence of frames for transmission.
Within each communication sub-interval (see Fig. 1),
the successfully transmitted frames are available at the
receiver sequentially,3 i.e., if frame number is deliv-
ered then so were all the frames from 1 to .

• Synchronization: During each communication subin-
terval, starting at the sampling times , the
sender is kept informed of which is the highest such
that frames numbered from 1 to have arrived at the
receiver. This is done by means of ACK signals sent by
the receiver according to the process described in [19,
Sec. 2.5.2], where such highest is denoted as Se-
qNumT oAck. We assume that the frame transmission
process stops at the end of the communication subin-
terval and that the last ACK signal is always detected
at the sender because the receiver can use the whole
control subinterval to send the last ACK signal mul-
tiple times.

Based on the previous overview, the following assumptions,
together with the properties of the sliding window algorithm,
guarantee that the truncation operator is a suitable abstraction.

• Once a sequence of bits is submitted for
transmission, framing must be sequential, i.e., lower
indexed bits (more significant) are included in lower
indexed frames (transmitted first). According to the
frame order and flow control properties of the sliding
window algorithm, such sequential framing guarantees
that more significant bits are transmitted first. Conse-
quently, if not all frames can be transmitted during the
communication subinterval then the least significant

3This feature is described in page 109 of [19] where one can read:“. . . the
receiver just makes sure that it does not pass a frame up to the next-higher-level
protocol until it has already passed up all the frames with a smaller sequence
number.”

bits will not be delivered. Such property is captured in
the truncation operator.

• Take as the number of bits successfully trans-
mitted during the communication sub-interval initiated
at . By assuming that the last ACK is always
detected then is available at the sender before the
next sampling instant4 .

• Since is a function of the number of frames
transmitted, its random behavior arises from random
time-out, the existence of collisions generated by other
nodes or from fading. We assume that such variation
in rate, denoted by in (4), is an i.i.d. process.

B. Description of Uncertainty in the Plant

Let , and be given
constants, along with a stochastic process and an operator

satisfying

(6)

(7)

Given and , we study the ex-
istence of stabilizing feedback schemes for the following per-
turbed plant:

(8)
where , while and satisfy (6) and (7).
Notice that may represent uncertainty in the knowledge
of , while may portray the output of a feedback
uncertainty block . We chose this structure because it allows
the representation of a wide class of model uncertainty. It is also
allows the construction of a suitable stabilizing scheme.

Example 2.1: If then
.

In general, the operator may be nonlinear and
timevarying.

Notice that the constant is an upper-bound on the memory
of the allowable uncertainty . The reason why we require
such prior knowledge of is that, in the presence of a stochastic

or stochastic , we were not able to guarantee robust
stability for infinite memory by just imposing conditions on
its induced norms. On the other hand, if the plant and the link
are deterministic then we can guarantee robust stability even if

is infinity. These results are stated in full detail and proved in
Section III.

C. Statistical Description of

The process is i.i.d. and independent of , meaning
that it carries no information about the link nor the initial state.
In addition, for convenience, we use the same representation as
in (4) and write

(9)

where and . Notice that is respon-
sible for the stochastic behavior, if any, of the plant.

4As we will show in Section III, our results hold if the sender has access to
r(k) at t = (k + 1)T and not before.
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Fig. 2. Structure of the feedback interconnection.

D. Functional Structure of the Feedback Interconnection

We assume that the feedback loop has the structure depicted
in Fig. 2, also referred to as the information pattern [28]. The
blocks denoted as encoder and controller are stochastic opera-
tors whose domain and image are uniquely determined by the
diagram. At any given time , we assume the following.

• The controller has access to the realization
. Notice that this assumption does not presuppose

that the controller knows the exact realization of the
model of the system. According to (8), the dynamics
of the system is represented by together with a
multiplicative and an additive uncertain terms. The main
purpose of such uncertain representation is to account
for the incomplete knowledge that the controller might
have about the plant. The fact that the controller has some
knowledge of the model dynamics of a stochastically
time-varying plant is a common assumption, for instance,
in jump-linear systems [4].

• The encoder and the controller have access to
. This assumption is motivated in Section II-A,

where we explain how typical protocols regulate the reli-
able transmission of information over a direct link.

• The encoder and the controller have access to the con-
stants , , and .

The encoder and the controller are described as follows.

• The encoder is a function that has
the following dependence on observations:

(10)

• The control action results from a map
exhibiting the following

functional dependence:

(11)

where are the bits successfully transmitted through
the link, i.e.:

(12)

As such, can be equivalently expressed as

Definition 2.2: (Feedback Scheme): We define a feedback
scheme as the collection of a controller and an encoder .

E. Problem Statement and M-th Moment Stability

Definition 2.3: (Worst Case Envelope): Let be the solu-
tion to (8) under a given feedback scheme. Given any realization

of the random variables , , , and ,
the worst case envelope is the random variable whose re-
alization is defined by

(13)

Consequently, is the smallest envelope that contains every
trajectory generated by an initial condition in the interval

. We adopted the interval to make
the paper more readable. All results are valid if it is replaced by
any other symmetric bounded interval.

Our problem is to determine necessary and sufficient con-
ditions that guarantee the existence of a stabilizing feedback
scheme. The results are derived for the following notion of
stability.

Definition 2.4: ( th Moment Robust Stability): Let
, , , and be given.

The system (8), under a given feedback scheme, is th moment
(robustly) stable provided that the following holds:

if
otherwise

(14)
The first limit in (14) is an internal stability condition while the
second is an external stability condition. The constant must
be such that holds for all allowable
disturbances , as well as every and satis-
fying (6), (7).

F. Main Results and Conclusions

The main results of the paper are the sufficiency Theorems
3.2 and 3.4 proved in Section III. The sufficiency conditions
are proved constructively by means of the stabilizing feedback
scheme of Definition 3.3. The necessary and sufficient condi-
tions can be expressed as inequalities involving and plus a
few auxiliary quantities that depend on the statistical behavior
of the plant and the link as well as the descriptions of uncer-
tainty. The intuition behind such auxiliary quantities is given in
Section V. In order to preserve stability, the presence of random-
ness must be offset by an increase of the average transmission
rate . In addition, we find that the higher the larger the toler-
ance to uncertainty in the plant.

III. SUFFICIENCY CONDITIONS FOR THE ROBUST

STABILIZATION OF FIRST-ORDER LINEAR SYSTEMS

In this section, we derive constructive sufficient conditions
for the existence of a stabilizing feedback scheme. We start with
the deterministic case in Section III-A, while Section III-B deals
with random and . We stress that our proofs hold under the
framework of Section II. The following definition introduces
the main idea behind the construction of a stabilizing feedback
scheme.

Definition 3.1: (Upper-Bound Sequence): Let ,
, and be given. Define the

upper-bound sequence as

(15)
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where for , and is an effective
rate given by

(16)

Definition 3.2: Following the definition of we also de-
fine and such that:

(17)

where .
We adopt to guarantee that .

If then we can select . Notice that
the multiplicative uncertainty acts by reducing the
effective rate . After inspecting (16), we find that

. Also, we have that

and (18)

Notice that can be constructed at the controller and
the encoder because both have access to , , , and

, while is accessible at
the controller (see Section II-D).

Definition 3.3: (Stabilizing Feedback Scheme): The feed-
back scheme is defined as follows.

• Encoder: Measures and computes
such that

(19)

Place for transmission. For any
, the above construction pro-

vides the following centroid approximation for
:

(20)

which satisfies .
• Controller: From the bits placed for transmission in

the stochastic link, only bits go through. Compute
as

(21)

As expected, the transmission of state information
through a finite capacity medium requires quantiza-
tion. The encoding scheme of Definition 3.3 is not an
exception and is structurally identical to the ones used
in [2] and [24], where sequences were already used to
upper-bound the state of the plant.

The following lemma suggests that, in the construction of sta-
bilizing controllers, we may choose to focus on the dynamics of
the sequence . That simplifies the analysis in the presence
of uncertainty because the dynamics of is described by a
first-order difference equation.

Lemma 3.1: Let , and be
given. If is the solution of (8) under the feedback scheme
of definition 3.3, then the following holds:

for all , every choice of ,
and .

Proof: We proceed by induction, assuming that
for and proving that .

From (8), we get

(22)

The way the encoder constructs the binary expansion
of the state, as well as (21), allow us to conclude that

. Now, we recall that
, and

that , so that (22) implies

(23)

The proof is concluded once we realize that .

A. The Deterministic Case

We start by deriving a sufficient condition for the existence
of a stabilizing feedback scheme in the deterministic case, i.e.,

and . Subsequently, we move for
the stochastic case where we derive a sufficient condition for
stabilizability.

Theorem 3.2: (Sufficiency Conditions for Robust Sta-
bility): Let , , and
be given and be defined as

where .
Consider that is the solution of (8) under the feedback

scheme of Definition 3.3 as well as the following conditions:

• C1) ;
• C2) .
If C1) and C2) are satisfied, then the following holds:

(24)

for all , and
.

Proof: From Definition 3.1, we know that, for arbitrary

(25)
Solving the difference equation for gives

(26)

which, using , leads to

(27)

However, we also know that , so that

(28)
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which implies

(29)

Direct substitution of (29) in (27) leads to
.

The proof is complete once we make and use
Lemma 3.1 to conclude that .

B. Sufficient Condition for the Stochastic Case

The following Lemma provides a sequence, denoted by
, which is an upper-bound for the th moment of .

We show that is propagated according to a first-order dif-
ference equation that is suitable for the analysis in the presence
of uncertainty.

Lemma 3.3: ( th Moment Boundedness): Let ,
, , and be given. Consider the following

sequence defined for :

(30)

where for , , is the impulse
response given by:

(31)

and . If is the solution of (8)
under the feedback scheme of Definition 3.3, then the following
holds:

for all , and
.

Proof: Since Lemma 3.1 guarantees that
, we only need to show that
. Again, we proceed by induction by noticing that

and by assuming that for
. The induction hypothesis is proved once we estab-

lish that . From Definition 3.1,
we know that

(32)

Using Minkowsky’s inequality [8] as well as the fact that
is independent of and for , we get

(33)

which, using the inductive assumption, implies the following
inequality:

(34)

where we used the fact that, for arbitrary random variables
, the following holds:

(35)

The proof follows once we notice that the right-hand side of (34)
is just .

Theorem 3.4: (Sufficient Condition): Let , ,
, and be given along with the quantities

that follow:

where and come from (17). Consider that is the
solution of (8) under the feedback scheme of Definition 3.3 as
well as the following conditions:

• C3) ;
• C4) .
If C3) and C4) are satisfied, then the following holds:

(36)

for all , and
.

Proof: Using from Lemma 3.3, we arrive at

(37)
where we use . How-
ever, from (37), we conclude that

(38)
or, equivalently

(39)

Substituting (39) in (37), gives

(40)
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The proof follows from Lemma 3.3 and by noticing that
can be rewritten as

(41)

C. Extension to Multistate Systems

The multi-state case entails several difficult challenges and
the possibility of extending our results has to be studied on a
case-by-case basis. The following is a list of problems that have
to be faced in such extension.

• If the system is stochastic and multistate, then modal de-
composition might not be possible [16].

• Even if the system is time-invariant then one needs to
solve an allocation problem. To see that, one has to con-
sider that stabilization must be guaranteed for all modes.
An allocation algorithm must regulate the transmission
of information about each mode through one link which
might also exhibit rate fluctuations.

• The previous questions may get even more complicated
in the presence of output feedback.

In [14], we provide examples where the multistate case can be
tackled. In particular, we look at uncertain fully observed time-
invariant plants. The approach there uses real Jordan forms, in
the same manner as [24]. Very particular instances of the sto-
chastic case may also be found there. We stress that the contri-
bution in [14], for the stochastic case, is very modest and leaves
open an interesting area for further research. Results for the fully
observed Markovian case over finite alphabets, in the presence
of a deterministic link, can be found in [16].

IV. NECESSARY CONDITIONS FOR THE EXISTENCE OF

STABILIZING FEEDBACK SCHEMES

Consider that . We derive necessary con-
ditions for the existence of an internally stabilizing feedback
scheme. We emphasize that the proofs in this section use the th
moment stability criteria and that they are valid regardless of the
encoding/decoding scheme. They follow from a counting argu-
ment5 which is identical to the one used by [24] and [26]. Neces-
sary conditions for stability were also studied for the Gaussian
channel in [27] and for other stochastic channels in [21], [22].
A necessary condition for the almost sure stabilizability in the
presence of arbitrary stochastic channels is given by [26]. We
include our treatment, because it provides necessary conditions
for th moment stability, which are inequalities involving di-
rectly the defined quantities and . Such quantities
are an important aid on the derivation of the conclusions pre-
sented in Section V.

We derive the necessary condition for the following class of
state–space representations:

(42)

5We also emphasize that this proof is different from what we had originally.
The present argument was suggested by a reviewer of one of our publications

where , , and is a
block upper-triangular matrix of the form

. . .
...

. . .
...

(43)

and is a sequence of random rotation matrices satisfying
. We also assume that is independent of .

The motivation for choosing (43) is that may be taken as a
real Jordan block. The representation (42) encompasses the sto-
chastic first-order case and it is also important in the represen-
tation of time-invariant plants. Notice that every dynamic ma-
trix , of a linear and time-invariant system, is similar to a real
Jordan form, i.e., a block diagonal matrix where each block is a
real Jordan block [9].

In this section, we also adopt the following th order gener-
alization of :

(44)

Theorem 4.1: Let be the solution of the state–space
equation (42) along with and given by

(45)

(46)

If the feedback system is th moment stable, i.e.,
then the following inequality is

satisfied:

(47)

If we just require , then the following must
hold:

(48)

Proof: (See [26] for more details on similar counting ar-
guments)

Consider a specific realization of , and along with the
following sets:

(49)

(50)

where is obtained through a fixed feedback law
. Since is given by (42) and

can take, at most, values, we find that

(51)
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Consequently, using (51) we infer that

(52)

where we used and
. By taking expectations, the

th moment stability assumption leads to

which concludes the proof. The proof for the case where only
is required also follows directly from the

previous analysis.
Corollary 4.2: Let be the solution of the following

linear and time-invariant system:

(53)

If the feedback system is th moment stable, i.e.,
then the following inequality is

satisfied:

(54)

where is the number of unstable eigenvalues of . If
we just require then the following must
hold:

(55)

Proof: By writing in its real Jordan form, the proof is a
direct adaptation of the proof of Theorem 4.1.

V. PROPERTIES OF THE MEASURES AND

Consider that and are stochastic processes, that there is
no uncertainty in the plant and no external disturbances, i.e.,

. In such situation, (8) can be written as

(56)

For a given , the stability condition of Definition 2.4 be-
comes

(57)

If is a real random variable then Jensen’s inequality [5]
implies:

where equality is attained if and only if is a deterministic con-
stant. As such, can be used as a measure
of “randomness” which can be taken as an alternative to vari-
ance. Notice that such quantity may be more informative than
variance because it depends on higher moments of . We use
this concept to interpret our results and express our conditions

in a way that is amenable to a direct comparison with other pub-
lications. Along these lines, the following are randomness mea-
sures for and :

(58)

(59)

where and are given by (repeated here for conve-
nience)

(60)

(61)

The following equivalence is a direct consequence of the nec-
essary and sufficient conditions proved in Theorems 4.1 and 3.4:

Exists feedback

(62)

After examining (62), we infer that and encom-
pass the influence of on the stability condition, while and
are independent of . Condition (62) suggests that is the
right intuitive measure of quality, of a direct link, for the frame-
work considered in this paper. The following are properties of

and .

• Note that Jensen’s inequality implies that
and , where equality is achieved only if the
corresponding random variable is deterministic. Accord-
ingly, (62) shows that randomness in implies that

is necessary for stabilization. The fact
that randomness in the link creates the need for capacity
larger than , was already established, but quantified dif-
ferently, in [21]. In addition, we find that randomness in
the system adds yet another factor .

• By means of a Taylor expansion and taking limits, we get

(63)

Under the above limit, the necessary and sufficient condi-
tion (62) becomes . That is the weakest condition
of stability and coincides with the one derived by [24] for
almost sure stability. By means of (62) and (63), we can
also conclude that if , i.e. the feedback scheme is
almost surely stabilizable [24], then it is th moment sta-
bilizable for some .

• The opposite limiting case gives

(64)

(65)

where

• and are nondecreasing functions of .
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From the previous properties of and , we find that
the following hold true.

• A feedback scheme is stabilizable for all moments,
i.e., , if and only if

.
• If then there exists such that ,

. This is the case of the erasure
channel suggested by [21]. (see Example 5.2).

• Similarly, if then there exists such
that , (see Example
5.1). Notice that can be larger than one and still

for some . Even more, in Example 5.1,
we have and for all .

Example 5.1: Consider that is log-normally distributed,
i.e., is normally distributed. An example where
is log-normally distributed is given by [3]. If is the
variance of , then is given by

(66)

where the expression is obtained by direct integration. Note that
grows linearly with . It illustrates a situation where,

given , and , there always exist large
enough such that the necessary and sufficient condition

is violated.
The above analysis stresses the fact that feedback, using a

direct link, acts by increasing for which ,
is satisfied. In some cases one may get

.
1) The Exponential Statistic: Directly from (58) and (59),

we derive the equivalence

(67)
The equivalences expressed in (62) and (67) show that all the

information we need to know about the link is and or,
equivalently, .

Example 5.2: (From [21]) The binary erasure channel is a
particular case of the class of direct links considered. It can be
described by taking with probability and

with probability of erasure . In that case,
. After working through the formulas, one may

use (67) and (62) to get the same result as in [21]. In particular,
the necessary and sufficient condition for the existence of a sta-
bilizing feedback, for the time-invariant system with ,
is given by

A. Determining the Decay of the Probability Distribution
Function of

In this section, we explore (62) as a way to infer the decay of
the probability distribution of . From Markov’s inequality
[1, p. 80], we have that

(68)

On the other hand, for any given , if has a probability
density function then

(69)

As such, we infer that (62) and (68), (69) lead to

(70)

(71)

B. Uncertainty Interpretation of the Statistical Description
of the Direct Link

We suggest that can be viewed not only as a measure
of the quality of the link, in the sense of how is expected to
fluctuate over time, but it can also be modified to encapsulate a
description of uncertainty. To be more precise, consider that
is an uncertainty set of direct links and that the "nominal" link
has a deterministic data-rate . The elements of are
the following probability mass functions:

where represents a direct link by specifying its statis-
tics, i.e., . The following is a measure of
uncertainty in the link:

(72)

In this situation, (62) implies that the following is a necessary
and sufficient condition for the existence of a feedback scheme
that is stabilizing for all direct links in the uncertainty set

C. Issues on the Stabilization of Linearizable Nonlinear
Systems

In this section, we explain why a minimum rate must be guar-
anteed at all times in order to achieve stabilization in the sense
of Lyapunov.6 Consider that the following is a statespace repre-
sentation which corresponds to the linearization of a nonlinear
system around an equilibrium point:

(73)

Consequently, stability in the sense of Lyapunov implies that

(74)

where and are the compo-
nents of . However, (74) implies that is stable for all
moments, so Corollary 4.2 leads to:

(75)

6Also denoted as � � � stability
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which, by means of (64), also implies that
. As a consequence, local stabilization

imposes a minimum rate which has to be guaranteed at all
times. The classical packet-erasure channel is characterized by

and, as such, it cannot be used for stabilization in the
sense of Lyapunov. The fact that the classical erasure channel
cannot be used to achieve stability in the sense of Lyapunov
could already be inferred from [22].
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