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Abstract— In this paper, we study fundamental limitations
of disturbance attenuation of feedback systems, under the
assumption that the controller has a finite horizon preview
of the disturbance. In contrast with prior work, we extend
Bode’s integral equation for the case where the preview is
made available to the controller via a general, finite capacity,
communication system. Under asymptotic stationarity assump-
tions, our results show that the new fundamental limitation
differs from Bode’s only by a constant, which quantifies the
information rate through the communication system. In the
absence of stationarity, we derive a universal lower bound which
uses entropy rates as a measure of performance.

I. INTRODUCTION

Since it was first published in 1945 [1], Bode’s integral
equation is one of the most significant results in the theory
of linear feedback. If S(z) is the sensitivity transfer function
[5] of a single-input linear feedback loop, in discrete time,
then Bode’s integral equation can be written as:

1
2π

∫ π

−π

log(|S(ejω)|)dω =
∑

λ∈UP
log |λ| (1)

where UP are the unstable poles of the open loop system [5],
which is assumed to be rational and strictly proper. By using
feedback, one would expect that disturbance rejection can be
improved. On the other hand, (1) quantifies a fundamental
limitation which says that disturbance rejection can be, at
most, shaped in frequency. Equivalently, |S(ejω)| cannot be
made small at all frequencies. Due to its importance, Bode’s
fundamental limitation has been extended to more general
frameworks [23] than the linear and time invariant one. The
multi-dimensional version was provided in [9], while the
time-varying case has been addressed in [13] and certain
non-linear systems have been analyzed in [29], [12], [24]. In
recent publications, such as [16] and references therein, the
study of fundamental limitations generalizes to controllers
with preview.

Using an information theoretic formulation, Bode’s result
was extended for feedback systems where the controller
belongs to a general class [14], [15], which might include
systems operating on a discrete or finite alphabet. The use
of information theoretic quantities, which was first suggested
in [12], also allows for the clear differentiation of the roles
of causality and information flow in the feedback loop [14],
[15]. While Causality is responsible for Bode’s fundamental
limitation, information constraints in the feedback loop give
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Fig. 1. Structure of a Remote Preview System.

rise to a new limitation[14], [15]. The work in [6] also
explores the connection between Bode’s integral formula and
the ability to transmit information over a Gaussian channel,
by means of linear and time invariant systems acting as
encoders and decoders. Bode’s fundamental limitation is
derived for a deterministic setting in [26], under certain
convergence conditions.

A. Main Contributions

It is well known that the use of disturbance previews
may improve controller performance [28]. In [19] one finds
recent results in optimal preview control as well as a source
of references to other related approaches. Recent results on
fundamental limitations in the presence of reference preview
are given in [2], [16].

In this publication, we consider the diagram of Fig 1,
where the controller has access to a remotely transmitted
disturbance preview, represented as r. This scheme portrays
a formulation where the disturbance results from a physical
phenomenon, which must travel in space until it reaches
the system. The travel time is represented as a delay of m
units of time. At the same time, a remote preview signal r
may be available to the controller, subject to information
transmission/processing constraints at the remote preview
system (RPS) block. We also adopt a Markovian model for
the disturbance, where G is an auto-regressive shaping filter
and w is the innovations process.

This work characterizes the fundamental limits of preview
control in a general remote setting. Examples of remote
preview systems can be found in animal life, such as the
ones that use vision and hearing to perceive a future physical
interaction. In these cases, the information/processing con-
straints arise from limited vision and hearing resolution as
well as noise and limited information processing in the brain
[8]. Another example can be found in the information path
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of a heat-shock mechanism at the cellular level [7]. Further
examples can be found in navigation engineering systems.

There are two extreme cases in this setup: The first is
when the disturbance can be fully transmitted1, in that case
the disturbance can be canceled by the controller, and the
second is the absence of remote preview information because
that is the classical framework.

In this paper, we study the situation in between, i.e., we
consider that C > I∞(r,d) > 0, where C is a finite positive
constant, which represents the Shannon capacity [3] of the
RPS block, and I∞(r,d) is the mutual information rate2

between the disturbance d and the remote preview signal r,
in bits per unit of time.

The following summarizes the contributions of this paper:

• we consider a new type of networked control system,
where a preview of the disturbance is available to the
controller via a general communication system. We
derive an extension of Bode’s integral formula for the
aforementioned scheme.

• by making use of information theoretic principles, our
fundamental limitations incorporate explicitly the infor-
mation rate constraints of the remote preview commu-
nication system.

• our derivations are valid for any strictly causal feed-
back loop, which includes time-varying, non-linear con-
trollers operating over arbitrary alphabets.

B. Main results and paper organization

The main result in the paper is stated in Theorem 3.1.
Under asymptotic stationary assumptions, such result has
the following frequency domain interpretation, derived in
theorem 3.4:

1
2π

∫ π

−π

log[S(ω)]dω ≥
n∑

i=1

max{0, log(|λi(A)|)}−C (2)

where S(ω) is an appropriate generalization of the sensitivity
function and A is the dynamic matrix of the plant P . In
comparison with (1), the inequality (2) differs on the right-
hand side by C, the upper-bound on I∞(r,d). It shows that
the fundamental limitation, in terms of log[S(ω)], is similar
to Bode’s formula.

The paper is organized as follows: Sections I-C and I-D
introduce the notation and main definitions. The technical
framework is given in section II, where we also describe
the measures of performance adopted in the paper. The
main results are stated in section III. The proof of the main
theorem as well as auxiliary results, which require intense
use of information theory, can be found in section IV.

C. Notation

The following notation is adopted:

• Whenever it is clear from the context, we refer to a
sequence {a(k)}∞0 of elements in R

n as a. A finite

1This would require a RPS block with infinite capacity.
2This quantity is precisely defined in section I-D.

segment of a sequence a is indicated as akmax

kmin

def
=

{a(k)}kmax

kmin
. If kmax < kmin then akmax

kmin
= ∅.

• Random variables are represented using boldface letters,
such as a.

• If a(k) is a stochastic process, then we use a(k) to
indicate a specific realization. Similar to the convention
used for sequences, we may denote {a(k)}∞0 just as
a and {a(k)}∞0 as a. A finite segment of a stochastic
process is indicated as akmax

kmin
.

• The probability density of a random variable a, if it
exists, is denoted as pa. The conditional probability,
given b, is indicated as pa|b.

• The expectation operator over a is written as E [a].
• We write log2(.) simply as log(.).
• We adopt the convention 0 log 0 = 0.

D. Basic Definitions of Information Theory

In this section, we summarize the main definitions of
Information Theory which are used throughout the paper. We
adopt [21], as a primary reference, because it contemplates
general probabilistic spaces in a unified framework. We de-
fine mutual information, between any two random variables,
as:

Definition 1.1: (from [21] pp. 9 ) The mutual information
I : (a;b) → R+

⋃{∞}, between a and b, is given by
I(a;b) = sup

∑
ij Pa,b(Ei × Fj) log Pa,b(Ei×Fj)

Pa(Ei)Pb(Fj)
, where

the supremum is taken over all partitions {Ei} of A and
{Fj} of B.
The definition of conditional mutual information can be
found in [21] (pp. 37).

Notice that, in definition 1.1, A and B may be different.
Without loss of generality, we consider probability spaces
which are countable or R

q, for some q. We also define
the following quantities, denoted as differential entropy and
conditional differential entropy, which are useful in the
computation of I(·, ·) for certain cases relevant in this paper.

Definition 1.2: If a is a random variable with alphabet
A = R

q , finite covariance matrix Σa and a bounded3

and measurable probability density function pa(·) then
we define the differential entropy of a as h(a) =
− ∫

Rq pa(γ) log pa(γ)dγ. If b is a random variable with
alphabet B = R

q′
and such that pa,b(·, ·) is a bounded mea-

surable probability density function, with finite covariance,
then we define the conditional differential entropy of a given
b as4:

h(a|b) = h(a,b) − h(b) =

−
∫

Rq′

∫
Rq

pa,b(γa, γb) log pa|b(γa, γb)dγadγb (3)

If B is countable and pa|b(γa, b) is bounded and log pa|b
is measurable in the measure induced in A×B then h(a|b)

3Since pa is bounded with a finite covariance matrix Σa it follows that
h(a) < ∞. The fact that h(a) < ∞ further implies that pa log pa is
integrable. Proofs of these facts use standard analysis arguments and can
be found in [15]

4Notice that the equalities bellow hold because all the integrands are
integrable
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is defined as:

h(a|b) = −
∑
γb∈B

∫
Rq

pa,b(γa, γb) log pa|b(γa, γb)dγa (4)

Likewise, the quantity h(a|b, c) is defined by incorporating
another sum if the alphabet of c is discrete, or an integral
otherwise. Notice that the quantity defined in (4) may not
be bounded, because the integrand is not necessarily in-
tegrable/summable. In the more general case, if we write
h(a|b) then we assume that pa|b is bounded and that log pa|b
is integrable with respect to the probability measure induced
in A×B. A more rigorous treatment of this technicality can
be found in [15].

In order to simplify our notation, we also define the
following quantities:

Definition 1.3: Let a and b be stochastic processes. The
following is the definition of (mutual) information rate5:

I∞(a;b) = lim sup
N→∞

I(aN−1
0 ;bN−1

0 )
N

Definition 1.4: For a given stochastic process, we also
define entropy rate as:

h∞(a) = lim sup
N→∞

h(aN−1
m )

N − m
(5)

where m is the time delay represented in Fig 2.
The use of information rates is motivated by its universality
[3], i.e., it quantifies the rate at which information can
be reliably transmitted through an arbitrary communication
medium.

In this paper, we will refer to channels which are stochastic
operators conforming to the following definition:

Definition 1.5: (Channel) Let V and R be given input and
output alphabets, along with a stochastic process, denoted
as c, with alphabet C. In addition, consider a causal map
f : C∞×V∞ → R∞. The pair (f, c) defines a channel. The
following are examples of channels:

• Additive white Gaussian channel: V = R = C = R, c
is an i.i.d. white Gaussian sequence with unit variance
and f(c,v)(k) = c(k) + v(k).

• Binary symmetric channel, with error probability
pe: V = R = C = Z2 = {0, 1}, c is an i.i.d sequence
satisfying P(c(k) = 1) = pe and f(c,v)(k) =
c(k) +mod2 v(k)

For any given channel (f, c), the supremum of the achiev-
able information rates is a fundamental quantity denoted as
capacity [3]. The formal definition of capacity can be found
in [3], for which the following holds:

∀k, sup
p
vk
0

I
(
vk

0 ; {f(v, c)}k
0

)
k

≤ C (6)

where the supremum is taken over all allowable vk
0 and C

represents the capacity of the channel (f, c).

5Throughout the paper, for simplicity, we refer to mutual information rate
simply as information rate.

E. Spectral Properties of Asymptotically Stationary Stochas-
tic Processes

We adopt the following definition of asymptotic power
spectral density.

Definition 1.6: A given zero mean real stochastic process
a is asymptotically stationary if the following limit exists for
every γ ∈ N:

R̄a(γ)
def
= lim

k→∞
E [a(k + γ)a(k)] (7)

We also use (7) to define the following asymptotic power
spectral density:

F̂a(ω) =
∞∑

k=−∞
R̄a(k)e−jωk (8)

II. TECHNICAL FRAMEWORK AND ASSUMPTIONS

Regarding the general scheme of Fig 1, the following
assumptions are made:

• w is a scalar (w(k) ∈ R), unit variance, identically and
independently distributed stochastic process. For each k,
w(k) is distributed according to a density pw, satisfying
|h∞(w(k))| < ∞.

• G is an all-pole stable filter of the form:

G(z) =
α

1 − ∑p
m=1 amz−m

(9)

where p ≥ 1, ai and α > 0 are given. We chose this
form of G, as a way to model the disturbance d, not only
because it is convenient that G−1 is well defined and
causal, but also because there exists a very large class
of power spectral densities that can be arbitrarily well
approximated by |G(ω)|2 [22]. In addition, we assume
that G has zero initial conditions.

• given n, P is a single input plant with state x(k) ∈ R
n,

which satisfies the following state-space equation:

x(k+1) =
[
xu(k + 1)
xs(k + 1)

]
=

[
Au 0
0 As

]
x(k)+

[
bu

bs

]
e(k)

(10)
y(k) = Cx(k), |λi(Au)| ≥ 1, |λi(As)| < 1 and k ≥ 0

The state partitions xu and xs represent the unstable and
stable open-loop dynamics, respectively. In addition,
the initial state x(0) is a random variable satisfying
|h(xu(0))| < ∞.

• q, w, x(0) and c are independent, where c represents
the channel noise according to definition 1.5.

• the measurement noise q is such that the following
holds:

I(x(0);um−1
0 ) < ∞

meaning that the controller does not have access to an
exact description of the initial state of the plant. Since
um−1

0 = em−1
0 , we could have equivalently required

that I(x(0); em−1
0 ) < ∞.

• e is a scalar (s(k) ∈ R) stochastic process for which
ekmax

kmin
has a probability density function, for every finite

kmin, kmax ≥ m.
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A. Performance measures using entropy rates and asymp-
totic power spectra

In section III, which comprises our most general results,
we characterize limits of performance by means of a lower
bound to the difference h∞(e) − h∞(d). In standard texts,
such as [20], [3], the entropy rate, of a given stochastic pro-
cess, is interpreted as a measure of randomness or power. We
use entropy rates to gage performance, not only because it is
technically convenient, by allowing us to derive inequalities
involving the information rate at the remote preview system
(RPS) block, but also because it is a fundamental quantity
which can be related to other, more common, measures of
performance.

1) Definition of a sensitivity-like function:
Definition 2.1: If the stochastic process e, represented in

Fig 1, is asymptotic stationary then we define the following
sensitivity-like function:

S(ω)
def
= lim sup

σq→0

√
F̂e(ω)
F̂d(ω)

(11)

III. FUNDAMENTAL LIMITATIONS FOR THE GENERAL

CASE

In this section, we derive performance bounds for the
scheme6 of Fig 2. In such case, the remote preview system is
constructed by means of an arbitrary channel and a general
encoder.

In the rest of the paper, we adopt the following assump-
tions:

• (A1) E and K are causal operators defined in the
appropriate spaces, i.e., the output of E must belong
to the channel input alphabet, which might be discrete
or continuous. Similarly, the output of the channel must
be defined in the r-input alphabet of K (see Fig 2).

• (A2) (Feedback well-posedness) we assume that the
feedback system is well-posed, i.e., that there exists
a causal operator J such that the following is well
defined:

u(k) = J(x(0), r,d,q)(k), k ≥ 0 (12)

Notice that, at each time step k, we can also define a
time varying Jk such that:

Jk(x(0), rk
0 ,dk−1

0 ,qk
0)

def
= J(x(0), r,d,q)(k), k ≥ 0

A. Derivation of a general bound involving entropy rates

As we have discussed in section II-A, we use h∞(e) −
h∞(d) as a performance measure for the most general case,
where we do not require e to be asymptotic stationary. The
following Theorem provides an universal lower bound for
h∞(e) − h∞(d) as a function of the unstable poles of P
and the capacity of the remote preview channel. All of the
remaining results in this section are, in one way or another,
consequences of such universal lower bound.

6Although our results are valid for the general scheme of Fig 1, for
simplicity, we consider the concrete scenario depicted in Fig 2.
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Fig. 2. Structure of a remote preview system, using a general communi-
cation channel.

Theorem 3.1: Consider the feedback interconnection rep-
resented in Fig 2. In addition, assume that the plant (10)
satisfies supk E [(x(k))T x(k)] < ∞. For any encoder E and
controller K , satisfying (A1) and (A2), the following is true:

h∞(e) − h∞(d) ≥
n∑

i=1

max{0, log(|λi(A)|)} − C (13)

where C represents the capacity [3] of the remote preview
channel.

The proof of Theorem 3.1 can be found in section IV-B.2.
In addition, section IV comprises not only all the details
of the proof, but it also contains preliminary results, which
clarify aspects such as the role of causality and stability.

B. Expressing performance limitations by means of asymp-
totic power spectral densities: an extension to Bode’s integral
formula

Under asymptotic stationary assumptions, in Theorem 3.4
we ascribe a frequency domain interpretation to Theorem
3.1.

We start with the following lemma, which establishes a
connection between h∞(e) and its asymptotic power spectral
density F̂e.

Lemma 3.2: If e is an asymptotically stationary process7

then the following holds:

1
4π

∫ π

−π

log(2πeF̂e(ω))dω ≥ h∞(e) (14)

Proof: Let ẽ be a zero-mean Gaussian stochastic process
such that E [ẽ(k+γ)ẽ(k)] = E [e(k+γ)e(k)] holds. In terms
of conditional differential entropy, we can write:

h∞(e) ≤ lim sup
N→∞

h(ẽN−1
m )

N − m
(15)

where we used the fact that Gaussian distributions maximize
differential entropy [3], for a given covariance matrix. In
addition, we can also write [3]:

∀γ ∈ N+, lim sup
N→∞

h(ẽN−1
m )

N − m
≤

lim sup
N→∞

∑N−1
k=m+γ h(ẽ(k)|ẽk−1

k−γ)
N − m

(16)

Now choose ē as a zero mean Gaussian stationary stochas-
tic process with an auto-correlation given by R̄e(γ), the

7In more rigorous terms, we should also require that F̂e is Lebesgue
integrable. More details can be found in [10], pp. 64-65.
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asymptotic auto-correlation of e. We can use such limit auto-
correlation and substitute (16) in (15) to obtain:

∀γ ∈ N+, h∞(e) ≤ h(ē(γ)|ēγ−1
0 ) (17)

as well as the following limit:

h∞(e) ≤ lim
γ→∞h(ē(γ)|ēγ−1

0 ) (18)

On the other hand, we know that [3]:

lim
γ→∞h(ē(γ)|ēγ−1

0 ) =
1
4π

∫ π

−π

log(2πeF̂e(ω))dω (19)

�
By means of lemma 3.2 and Theorem 3.1, we arrive at

the following lemma:
Lemma 3.3: Consider the feedback interconnection rep-

resented in Fig 2. In addition, assume that the plant (10)
satisfies supk E [xT (k)x(k)] < ∞. For any encoder E
and controller K , satisfying (A1)-(A2) and such that e is
asymptotic stationary, the following is true:

1
4π

∫ π

−π

log(2πeF̂e(ω))dω ≥
n∑

i=1

max{0, log(|λi(A)|)} − C + h∞(d) (20)

where C represents the capacity [3] of the RPS channel.
We can use lemma 3.3 to state the following Theorem,

which provides a fundamental limitation in terms of S.
Theorem 3.4: Consider the feedback interconnection rep-

resented in Fig 2. In addition, assume that the plant (10)
satisfies supk E [xT (k)x(k)] < ∞. If the encoder E and the
controller K are such that (A1)-(A2) are satisfied and e is
asymptotic stationary then the following is true:

1
2π

∫ π

−π

log
(√

2πeS(ω)
)

dω ≥
n∑

i=1

max{0, log(|λi(A)|)} − C + h∞(w) (21)

where C represents the capacity [3] of the RPS channel. In
addition, if w is Gaussian then (21) is given by:

1
2π

∫ π

−π

log (S(ω)) dω ≥
n∑

i=1

max{0, log(|λi(A)|)} − C

(22)
Proof: Since w is i.i.d., we can write the following equality:

h∞(d) = lim
k→∞

h(d(k)|dk−1
m ) = log(α) + h∞(w) (23)

where we used the facts that G has zero initial conditions
and that, in the time-domain, G is represented as:

d(k) = αw(k) +
p∑

i=1

aid(k − i)

Using the fact that
∫ π

−π
log |G(ejω)|dω = 2πα, we know that

(23) can be re-written as:

h∞(d) =
1
4π

∫ π

−π

log(|G(ejω)|2)dω + h∞(w) (24)

Since d is asymptotically stationary and w is unit variance,
we also have that F̂d(ω) = |G(ejω)|2 and (24) can be written
as:

h∞(d) =
1
4π

∫ π

−π

log(F̂d(ω))dω + h∞(w) (25)

From Lemma 3.3 and (25), we arrive at:

∀σq > 0,
1
2π

∫ π

−π

log

(√
2πe

F̂e(ω)
F̂d(ω)

)
dω ≥

n∑
i=1

max{0, log(|λi(A)|)} − C + h∞(w) (26)

After taking limits, and from the definition of S(ω), we
get:

1
2π

∫ π

−π

log[
√

2πeS(ω)]dω ≥

lim sup
σq→0

1
2π

∫ π

−π

log

(√
2πe

F̂e(ω)
F̂d(ω)

)
dω (27)

The proof of (21) follows from (27) and (26). If w is
Gaussian then h∞(w) = 1

2 log(2πe) and (22) follows from
(21) by direct substitution. �

IV. PROOF OF THEOREM 3.1

In this section, we provide not only technical preliminaries
in Information Theory, but we also derive the auxiliary
results which lead to the proof of Theorem 3.1, given in
subsection IV-B.2.

A. Preliminaries on Information Theory

Using Theorem 2.1.2 of [21], we know that if log pa and
log pa|b are integrable with respect to the probability measure
induced in A× B then we can compute I(a;b) as:

I(a;b) = h(a) − h(a|b) (28)

In this paper, if we use (28) then, implicitly, we assume
that log pa and log pa|b are integrable with respect to the
probability measure induced in A× B.

The following is a list of properties used in the subsequent
sections. The proof of such properties may be found in [21]
and, in some cases, in [3]: (P1): I(a;b) = I(b;a) ≥ 0 and
I(a;b|c) ≥ 0; (P2) Kolmogorov’s formula 8 (equation
3.6.6 in [21]):

I((a,b); c|d) = I(b; c|d) + I(a; c|(b,d))

(P3): Theorem 3.7.1 in [21]: If f and g are measur-
able functions in the appropriate probability spaces then
I(f(a); g(b)|c) ≤ I(a;b|c) and equality holds if f and
g are invertible9; (P4): From property (P3), we conclude
that I(a; (b, c)|d) = I(a; (b − c, c)|d). Using (P2), such

8Notice that equation 3.6.3 in [21] has a typographic mistake. On the left
hand side of the equality, the correct is I(ξ, ζ)

9In [21] equality is guaranteed for everywhere dense f and g. Every
time we say that a function is invertible in this context we are implicitly
assuming that it is everywhere dense.
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equality also leads to I(a;b|(c,d)) = I(a;b − c|(c,d));
(P5): By means of (P1) and (28), we infer that h(a) ≥
h(a|b), where equality holds if and only if a and b are
independent. Likewise, we can use properties (P1)-(P2) to
state that I(a; (b, c)) ≥ I(a;b), which can be used with
(28) to derive h(a|b) ≥ h(a|(b, c)); (P6): Using a change
of variables in the integrals of definition 1.2, we reckon
that if f : B → A is any given function then h(a|b) =
h(a− f(b)|b); (P7) [3]: If a has a finite covariance matrix
Σa then h(a) ≤ 1

2 log((2πe)n det(Σa)).

B. Auxiliary Results and the Proof of Theorem 3.1

The central result is presented in the following lemma,
stating that h∞(e) is lower bounded by h∞(d) +
lim infN→∞

I(x(0);eN−1
0 )

N −I∞(r;d), where I∞(r;d) quanti-
fies the information rate flowing through the remote preview
channel.

Lemma 4.1: (Main entropy rate inequality) Consider
the feedback interconnection represented in Fig 2. For any
encoder E and controller K , satisfying the assumptions (A1)
and (A2), the following holds:

h∞(e) − h∞(d) ≥ lim inf
k→∞

I(x(0); ek
0)

k
− I∞(r;d) (29)

Proof: We start by choosing arbitrary k ≥ m and using the
fact that G has zero initial conditions to write:

h∞(d) = h(d(k)|dk−1
0 ) (30)

By means of (28), (P2) and (30), we obtain:

h∞(d) = h(d(k)|(dk−1
0 ,x(0),uk

0 ,qk
0))+

I((x(0),uk
0 ,qk

0);d(k)|dk−1
0 ) (31)

We proceed by re-writing each of the terms in the right hand
side of (31). By means of (P6) and using the fact that e(k) =
d(k) + u(k), we find that:

h(d(k)|(dk−1
0 ,x(0),uk

0 ,qk
0)) =

h(e(k)|(dk−1
0 ,x(0), ek−1

0 ,u(k),qk
0)) ≤

(P5)

h(e(k)|(ek−1
0 ,x(0))) =

(28) and (P2)

h(e(k)|ek−1
0 ) − I(e(k);x(0)|ek−1

0 ) (32)

Using the well-posedness assumption (A2), together with
(P2)-(P3), we can bound the second term on the right hand
side of (31) by means of the following inequality:

I((x(0),uk
0 ,qk

0);d(k)|dk−1
0 ) ≤

I((x(0), rk
0 ,qk

0);d(k)|dk−1
0 ) (33)

which, since x(0), qk
0 and (rk

0 ,dk
0) are mutually independent,

can be expressed as:

I((x(0),uk
0 ,qk

0);d(k)|dk−1
0 ) ≤ I(rk

0 ;d(k)|dk−1
0 ) (34)

By direct substitution of (34) and (32) into (31), we arrive
at:

h∞(d) ≤ h(e(k)|ek−1
0 ) − I(e(k);x(0)|ek−1

0 )+

I(rk
0 ;d(k)|dk−1

0 ) (35)

Now, choose arbitrary N > m so that we have the
following inequality based on (35):

h∞(d) ≤ 1
N − m

N−1∑
k=m

I(rk
0 ;d(k)|dk−1

0 )+

1
N − m

(
N−1∑
k=m

h(e(k)|ek−1
0 ) −

N−1∑
k=m

I(e(k);x(0)|ek−1
0 )

)

(36)

From (P3) we know that for any k ≤ N −1 the following
holds:

I(rk
0 ;d(k)|dk−1

0 ) ≤ I(rN−1
0 ;d(k)|dk−1

0 )

which, together with (P2), (P5) and (36), leads to:

h∞(d) ≤ 1
N − m

(
h(eN−1

m ) − I(eN−1
0 ;x(0))

)
+

1
N − m

(
I(rN−1

0 ;dN−1
0 ) + I(em−1

0 ;x(0))
)

(37)

Using the fact that I(em−1
0 ;x(0)) is finite, we conclude the

proof by considering the limit as N → ∞ in (37). �
1) Incorporating Stability: According to

the following lemma, stability suffices to
guarantee that lim infN→∞ 1

N I(eN−1
0 ;x(0)) ≥∑n

i=1 max{0, log(|λi(A)|)}, where A is the dynamic
matrix of P , as described by (10). Such result follows from
[25], [27], [18] and is the last step towards proving Theorem
3.1.

Lemma 4.2: Let x(k) be the solution of the state-space
equation (10). If the system satisfies supk E [(x(k))T x(k)] <
∞ then the following holds:

lim inf
N→∞

I(eN−1
0 ;x(0))

N
≥

n∑
i=1

max{0, log(|λi(A)|)} (38)

Proof: If A = As then we just use I(eN−1
0 ;x(0)) ≥ 0.

If A 	= As then we consider the following homogeneous
system:

xe(k + 1) = Auxe(k) + bue(k), xe(0) = 0 (39)

and define the estimate x̂(k) = A−k
u xe(k). Since xu(k) =

xe(k) + Ak
uxu(0) = Ak

u(x̂(k) − xu(0)), we know that:

k log(| det(AuAT
u )|) + log(det(Rxerror (k))) =

log(det(Rxu(k, k))) < β < ∞ (40)

where xerror(k) = x̂(k) − xu(0). Since x̂(k) is a function
of sk

0 , we have that:

I(x(0); eN−1
0 ) ≥ I(xu(0); eN−1

0 ) ≥
h(xu(0)) − h(x̂(N − 1) − xu(0)) (41)

But, from (P7) we know that:

lim sup
N→∞

h(x̂(N − 1) − xu(0))
N

≤

lim sup
N→∞

log(det(Rxerror (N − 1)))
2N

(42)
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As a consequence, we can use (40) to get
lim supN→∞

h(x̂(N−1)−xu(0))
N ≤ − log(| det(Au)|). The

proof follows by direct substitution �.
2) Proof of Theorem 3.1: The following remark consti-

tutes a proof of Theorem 3.1, where the statement is repeated
for convenience.

Remark 4.1: (Proof of Theorem 3.1) Consider the
feedback interconnection represented in Fig 2. In ad-
dition, assume that the plant (10) is stabilized, i.e.,
supk E [(x(k))T x(k)] < ∞ holds. For any encoder E and
controller K , satisfying (A1) and (A2), the following is true:

h∞(e) − h∞(d) ≥
n∑

i=1

max{0, log(|λi(A)|)} − C (43)

where C represents the capacity [3] of the remote preview
channel.

Proof: By direct substitution of (38) into (29), we obtain:

h∞(e) − h∞(d) ≥
n∑

i=1

max{0, log(|λi(A)|)} − I∞(r;d)

(44)
The proof follows from the definition of channel capacity
[3], i.e., I∞(r;v) ≤ C and by the data processing inequality
I∞(r;d) ≤ I∞(r;v) ≤ C.�
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