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Abstract
In this paper we develop an entirely new constructive global analysis
methodology for a class of hybrid systems known asPiecewise Linear
Systems(PLS). This methodology consists in inferring global prop-
erties of PLS solely by studying their behavior at switching surfaces
associated with PLS. The main idea is to analyzeimpact maps, i.e.,
maps from one switching surface to the next switching surface, by
constructing quadratic Lyapunov functions on switching surfaces. We
found that an impact map induced by an LTI flow between two switch-
ing surfaces can be represented as a linear transformation analytically
parameterized by a scalar function of the state. This representation of
impact maps allows the search forquadratic surface Lyapunov func-
tions to be done by simply solving a set of LMIs. Global asymptotic
stability, robustness, and performance of limit cycles and equilibrium
points of PLS can this way be efficiently checked. These new re-
sults were successfully applied to certain classes of PLS. Although
this analysis methodology yields only sufficient criteria of stability, it
has shown to be very successful in globally analyzing a large number
of examples with a locally stable limit cycle or equilibrium point. In
fact, it is still an open problem whether there exists an example with
a globally stable limit cycle or equilibrium point that cannot be suc-
cessfully analyzed with this new methodology. Examples analyzed
include systems of relative degree larger than one and of high dimen-
sion, for which no other analysis methodology could be applied.

1 Introduction
In this work we are interested in a class of nonlinear systems
known aspiecewise linear systems(PLS). PLS are character-
ized by a finite number of linear dynamical models together
with a set of rules for switching among these models. There-
fore, this model description causes a partitioning of the state
space into cells. These cells have distinctive properties in that
the dynamics within each cell are described by linear dynamic
equations. The boundaries of each cell are in effect switches
between different linear systems. Those switches arise from
the breakpoints in the piecewise linear functions of the model.

The reason why we are interested in studying this class of sys-
tems is to capture discontinuity actions in the dynamics from
either the controller or system nonlinearities. Although widely
used, very few results are available to analyze most PLS. More
precisely, one typically cannot guarantee stability, robustness,

and performance properties of PLS designs. Rather, any such
properties are inferred from extensive computer simulations.

In [4], we introduced an entirely new methodology to globally
analyze symmetric unimodal limit cycles1 of relay feedback
systems. The idea consisted in finding a quadratic Lyapunov
function on a switching surface that can be used to prove that
the associated Poincar´e map is contracting in some sense.

This paper generalizes the ideas from [4] to globally ana-
lyze PLS. In a similar way, the main idea consists in finding
quadratic Lyapunov functions on associated switching surfaces
that can be used to prove thatimpact maps, i.e., maps from one
switching surface to the next switching surface, are contracting
in some sense. The notion of an impact map can be though as
a generalization of a Poincar´e map. Impact maps are known to
be “unfriendly” maps in the sense that they are highly nonlin-
ear, multivalued, and not continuous. The novelty of this work
comes from expressing impact maps induced by an LTI flow
between two hyperplanes as linear transformations analytically
parameterized by a scalar function of the state. Furthermore,
level sets of this function are convex subsets of linear mani-
folds with dimension lower than that of the switching surfaces.
This allows us to search forquadratic surface Lyapunov func-
tionsby solving sets of LMIs using efficient computational al-
gorithms. Contractions of certain impact maps of the system
can then be used to conclude about global stability, robustness,
and performance of PLS.

In [1], we show that this new methodology can be used to not
only globally analyze limit cycles but also equilibrium points
of PLS. For that, we analyze on/off and saturation systems, in-
cluding those with unstable nonlinearity sectors for which clas-
sical methods like Popov criterion, Zames-Falb criterion, IQCs,
fail to analyze. Although this analysis methodology yields only
sufficient criteria of stability, it has shown to be very successful
in globally analyzing a large number of examples with a locally
stable limit cycle or equilibrium point. In fact, it is still an open
problem whether there exists an example with a globally stable
limit cycle or equilibrium point that could not be successfully
analyzed with this new methodology. Examples analyzed in-
clude systems of relative degree larger than one and of high
dimension, for which no other analysis methodology could be
applied.

1A limit cycle is unimodalif it only switches twice per cycle.



We have shown [2, chapter 8] that this methodology can be ef-
ficiently applied to not only globally analyze stability of limit
cycles and equilibrium points, but also robustness, and perfor-
mance of PLS. This success in globally analyzing stability, ro-
bustness, and performance of certain classes of PLS has shown
the power of this new methodology, and suggests its potential
towards the analysis of larger and more complex PLS.

A more complete and detailed version of this paper has been
submitted for publication [3].

2 Motivation
As discussed in introduction, there exist several tools to ana-
lyze PLS. One of the most important [7, 9, 6] is based in con-
structing piecewise quadratic Lyapunov functions in the state
space. There are, however, several drawbacks with this ap-
proach. First, piecewise quadratic Lyapunov functions in the
state space cannot be constructed to analyze most limit cycles.
Second, for most PLS, it is not possible to construct piecewise
quadratic Lyapunov functions with just the given natural par-
tition of the system. In order to improve flexibility a subdivi-
sion of partitions is typically necessary. The analysis method,
however, is efficient only when the number of partitions re-
quired to prove stability is small. Example 4.1 in [2] shows
that even for second order systems, the construction of piece-
wise quadratic Lyapunov functions can be computationally in-
tractable due to the large number of partitions in the state space
required for the analysis.Third, in general, for systems of or-
der higher than3, it is extremely hard to obtain a refinement
of partitions in the state-space to efficiently analyze PLS us-
ing piecewise quadratic Lyapunov functions. In fact, only a
few and specific examples of PLS of order higher than3 ana-
lyzed with this method have been reported.Finally, existence
of piecewise quadratic Lyapunov functions implies exponen-
tial stability of the system. Thus, this approach cannot prove
asymptotic stability of PLS when these are not exponentially
stable.

The construction of piecewise quadratic Lyapunov functions
for PLS proposed in [7, 9, 6] imposes continuity of the the
Lyapunov functions along switching surfaces. This means that
the intersection of two Lyapunov functions with a switching
surface—one from each side—defines a unique quadratic Lya-
punov function on the switching surface. Therefore, we con-
clude that if there are piecewise quadratic Lyapunov functions
for a certain PLS, then there are also quadratic Lyapunov func-
tions on switching surfaces for that same PLS. Note that the
converse is not true. For instance, piecewise quadratic Lya-
punov functions cannot be constructed to analyze limit cycles.
However, as demonstrated in [4], quadratic Lyapunov functions
on switching surfaces exist and can be efficiently constructed
to analyze limit cycles.

The purpose of this paper is to show how Lyapunov functions
on switching surfaces can be efficiently constructed. We call
theseQuadratic Surface Lyapunov Functions. Since a PLS be-
haves linearly inside each cell, only one of the following three
scenarios can happen to a trajectory entering a cell at some

pointx0 on a switching surface (see figure 1):

1. The cell is unbounded and there exists a trajectory that
will grow unbounded without ever switching. In this case,
x0 belongs to an unstable region of the PLS.

2. There is a locally stable equilibrium point in the cell and
the trajectory will asymptotically converge to it without
switching. If this is the case,x0 belongs to a stable region
of that equilibrium point.

3. The trajectory will switch in finite time.

Figure 1: Possible scenarios for a trajectory entering a cell

There are several ways to check if scenario1 can happen or not
(see [4, 1]). For now, assume that scenario1 does not happen.
If scenario2 happens, we are done, i.e., the initial pointx0 is a
stable point and so it does not require any further analysis. So,
we are left with scenario3. This scenario raises several interest-
ing questions: what happens to the trajectory after it switches?
Will it switch again? And, will it converge to some equilibrium
point or some limit cycle? These are the sort of questions we
address in this paper. The idea is to start by analyzing indi-
vidual maps from one switching surface to the next switching
surface. Then, we show that the analysis of PLS can be re-
duced to the simultaneously analysis of different maps from
one switching surface to another switching surface.

Analysis of nonlinear systems at manifolds has been used by
many researchers for a while now. The so-calledPoincaŕe
map was introduced in order to reduce the study of ann-
dimensional system to a discreten�1-dimensional system in a
manifold (see, for example, [8] for an introduction to Poincar´e
maps). The problem with Poincar´e maps is that they are typi-
cally nonlinear, not continuous, and multivalued. Thus, global
analysis of PLS is rarely done using these maps. This paper
explains how the difficulties inherent to Poincar´e maps can be
overcome and how they can be used to globally analyze PLS.
We show that our results really work in the sense that a large
number of examples of certain classes of PLS, that could not be
analyzed by any other method, were successfully proven glob-
ally stable.

All the problems described above associated with the method
proposed by [9, 7, 6], based on piecewise quadratic Lyapunov
functions, were not an issue in the classes of PLS analyzed
so far using quadratic surface Lyapunov functions.First,
quadratic surface Lyapunov functions can analyze both limit
cycles [4] and equilibrium points [1].Second, it was sufficient
to consider only the natural partition of all PLS analyzed so
far, with no extra complexity added. Note that none of exam-
ples in [4, 1] could be analyzed with just their natural partition
using piecewise quadratic Lyapunov functions.Third, our new
method scales well with the dimension of the system. And,
finally, quadratic surface Lyapunov functions can be used to
prove global asymptotic stability of PLS that are not exponen-
tially stable (see example 4.3 in [1]).



3 Impact maps
In order to analyze PLS using quadratic surface Lyapunov
functions, we first need to understand the behavior of the sys-
tem as this flows from one switching surface to the next switch-
ing surface. A useful notion that we will be using throughout
this paper is that ofimpact map. An impact map is simply a
map from one switching surface to the next switching surface.
Only after we understand the nature of a single impact map can
we look at a PLS as a whole, by combining all impact maps as-
sociated with the PLS, to conclude about stability, robustness,
and performance properties of the system.

Consider the following affine linear time-invariant system

_x = Ax+B (1)

wherex 2 IRn,A 2 IRn�n, andB 2 IRn. Note that we are not
imposing any kind of restrictions onA. Matrix A is allowed
to have stable, unstable, and pure imaginary eigenvalues. As-
sume (1) is part of some PLS, and that (1) is defined on some
open polytopical setX � IRn. Assume also a trajectory just
arrived to a subset of the boundary2 of X belonging to

S0 = fx 2 IRn : C0x = d0g

and the system switches to (1). In this paper, we are interested
in studying the impact map from some subset ofS0 to some
subset of

S1 = fx 2 IRn : C1x = d1g

also in the boundary ofX . In this scenario, some subsets ofS0

andS1 are switching surfaces of the PLS.

By a solution of (1) we mean a functionx defined on[0; t], with
x(0) 2 S0, x(t) 2 S1, x(�) 2 �X on [0; t]3, and satisfying (1).
In this case,t is a switching timeof the solutionx of (1) and
we say aswitchoccurs atx(t).

Let Sd
0 be some polytopical subset ofS0 where any trajectory

starting atSd
0 satisfiesx(t) 2 S1, for some finitet � 0, and

x(�) 2 �X on [0; t]. Let alsoSa
1 � S1 be the set of those points

x1 = x(t). The setSa
1 can be seen as the image set ofS

d
0 . We

callSd
0 thedeparture setin S0 andSa

1 thearrival set in S1.

We are interested in studying the impact map, induced by (1),
from x0 2 S

d
0 to x1 2 S

a
1 . Since bothx0 andx1 belong to

switching surfaces, they can be parameterized in their respec-
tive hyperplanes. For that, let

x0 = x
�

0 +�0

x1 = x
�

1 +�1

wherex�0 2 S0, x�1 2 S1, and�0;�1 are any vectors such
that�0 2 S

d
0 � x

�

0 and�1 2 S
a
1 � x

�

1. In this case,C0�0 =
C1�1 = 0. Define alsox�0(t) as the trajectory of (1), starting
atx�0, for all t � 0. The impact map of interest reduces to the
map from�0 to �1 (see figure 2).

Note that, in general, the impact map from�0 2 S
d
0 � x

�

0

to �1 2 S
a
1 � x

�

1 defined above is not continuous and it is
multivalued. This is illustrated in example 3.1 in [1].

2Theboundaryof X is the set of all limit pointsp of X such thatp 62 X.
3 �X denotes the closure of X, i.e, the set �X = X [

fpj p is a limit point ofXg.

1SS

x1

x*1

x0

∆1

0

∆ 0

x*0 x=Ax+B

Figure 2: Impact map from�0 2 S
d
0 � x

�

0 to �1 2 S
a
1 � x

�

1

Definition 3.1 Let x(0) = x
�

0 + �0. Definet�0
as the set

of all times ti � 0 such that the trajectoryx(t) with initial
conditionx(0) satisfiesC1x(ti) = d1 andx(t) 2 �X on [0; ti].
Define also the set ofexpected switching timesof the impact
map from�0 2 S

d
0 � x

�

0 to �1 2 S
a
1 � x

�

1 as

T =
�
tj t 2 t�0

; �0 2 S
d

0 � x
�

0

	
For an impact map, once an initial condition�0 2 S

d
0 � x

�

0

is given, in order to find an image�1 2 S
a
1 � x

�

1, we must
first find an associated switching timet. Solving for t, how-
ever, involves solving a transcendental equation. Solution to
such equations cannot, in general, be written in closed form,
and numerical procedures are typically the only way to solve
for t. Once a switching time is found, we can finally find the
corresponding�1.

Thus, in general, impact maps are highly nonlinear, multival-
ued, and not continuous. This “non-friendly” nature of impact
maps is the main reason why global analysis of PLS has not
been done before using quadratic surface Lyapunov functions.
The following result, however, shows that this map is not as
“bad” as it looks, and opens the door to analysis of PLS in
switching surfaces.

Theorem 3.1 AssumeC1x
�

0(t) 6= d1 for all t 2 T . Define

w(t) =
C1e

At

d1 � C1x
�

0(t)
and let

H(t) = e
At + (x�0(t)� x

�

1)w(t)

Then, for any�0 2 S
d
0 � x

�

0 there exists at 2 T such that the
impact map is given by

�1 = H(t)�0 (2)

Sucht 2 t�0
is the switching time associated with�1.

This theorem says that maps between switching surfaces, in-
duced by an LTI flow, can be represented as linear transfor-
mations analytically parameterized by a scalar function of the
state. At first, equation (2) may not seem of great help in an-
alyzing the impact map from�0 to �1. There,�1 is a linear
function of�0 and a nonlinear function oft, the switching time
associated with�0 and�1. The switching time, however, is a
function of�0. A transcendental equation needs to be solved
in order to findt. Thus, by this reasoning, it seems (2) is say-
ing that�1 is a nonlinear function of�0. But, that we already
knew.

This is, however, just one way of thinking about (2). Fortu-
nately, there are other ways to approach equation (2). Assume,
for now, the switching timet is fixed. The result: the impact
map (2) would be linear! But, what does it mean having the



switching timet fixed? In other words, what are the set of
pointsx�0 + �0 in the switching surfaceS0 such that every
point in that set has a switching time oft? In that set, the im-
pact map (2) is linear.

It turns out that the set of points inSd
0 that have a switching

time of t is a convex subset of a linear manifold of dimension
n� 2 (see figure 3). LetSt be that set, that is, the set of points
x
�

0 + �0 2 S
d
0 such thatt 2 t�0

. In other words, a trajec-
tory starting atx0 2 St satisfies bothx(�) 2 �X on [0; t], and
C1x(t) = d1. Note that since the impact map is multivalued, a
point inSd

0 may belong to more than one setSt.

S0

x (t)2

x (t)1
x (0)1

2x (0)

S1

St

Figure 3: Every point inSt has a switching time oft

Note also that, ast 2 T changes,St covers every single point
of Sd

0 , i.e.,Sd
0 = fxj x 2 St; t 2 T g. This follows since every

point �0 2 S
d
0 � x

�

0 can switch for the first time atSa
1 , and

thereforet�0
is always a nonzero set. These results can all be

summarized in the following corollary.

Corollary 3.1 Under the assumptions of theorem 3.1, for a
given t 2 T , the impact map from�0 2 St � x

�

0 to �1 2

S1 � x
�

1, given by�1 = H(t)�0, is a linear map. Moreover,
St is a subset of a linear manifold of dimensionn � 2, and
S
d
0 = fxj x 2 St; t 2 T g.

As we will see in section 4, this result is fundamental in the
analysis of PLS using quadratic surface Lyapunov functions.
It allows us to find conditions in the form of LMIs that, when
satisfied, guarantee stability, robustness, and performance of
PLS.

Before moving onto the proofs of the above results, it is im-
portant to understand the meaning of the assumption in the-
orem 3.1. This says the trajectoryx�0(t) cannot intersect the
switching surfaceS1 for all t 2 T . With a careful choice of
x
�

0 2 S0 (the initial condition ofx�0(t)), there are many cases
when this assumption is always satisfied, as explained in [1].

There are, however, cases where no choice ofx
�

0 2 S0 satisfies
the assumption. Or, in other cases,x

�

0 is fixed a priori (like in
RFS [4], where the location ofx� in S0 cannot be freely cho-
sen), and it may not satisfy the assumption. In these worst case
scenarios, there is at least onets 2 T such thatC1x

�

0(ts) = d1.
This does not mean we cannot obtain the desired linear repre-
sentation for the impact map. For some PLS, like RFS [4],
w(t) is defined via continuation, at somet = ts, and the the-
orem follows. If this is not the case, the theorem needs to be
slightly modified. Basically, att = ts, the impact map can
still be written as a linear transformation but parameterized by
another variable atts, i.e.,�1 = Hs(ts; �)�0, with �0 2 Sts .

Proof of theorem 3.1: We start by expressing�1 as function

of �0 andt, the switching time associated with�1. Letx(0) =
x0 2 S

d
0 . Integrating the differential equation (1) gives

x1 = e
At
x0 +

Z t

0

e
A(t��)

Bd�

Sincexi = x
�

i
+�i, i = 0; 1,

�1 = e
At�0 + e

At
x
�

0 +

Z t

0

e
A(t��)

Bd� � x
�

1

= e
At�0 + x

�

0(t)� x
�

1

From the factC1�1 = 0 andC1x
�

1 = d1 we get

C1e
At�0 = d1 � C1x

�

0(t) (3)

Since, by assumption,C1x
�

0(t) 6= d1 for all t 2 T , the last
expression can be written as

w(t)�0 = 1 (4)

which means�1 reduces toeAt�0 + (x�0(t)� x
�

1)w(t)�0

Note that ifA is invertible,x�0(t) can be written asx�0(t) =
e
At(x�0 +A

�1
B)�A

�1
B.

Proof of corollary 3.1: The only thing left to prove is thatSt is
a subset of a linear manifold of dimensionn�2. Letx0 = x

�

0+
�0 2 St. SinceC1x(t) = d1, �0 must satisfy equation (3),
andC0�0 = 0 since�0 2 S0 � x

�

0, which are both linear
equalities. �0 also satisfies a set of linear inequalities from
the fact thatx0 2 S

d
0 , x(t) 2 S

a
1 , andx(�) 2 �X on [0; t].

Therefore,St � x
�

0 has at most dimensionn � 2 and is linear.

4 Quadratic surface Lyapunov functions
Construction of Lyapunov functions for nonlinear systems is,
and has been, a difficult, and sometimes, frustrating task. As
explained before, there has been some results in constructing
piecewise quadratic Lyapunov functions for PLS. Although
these results are able to analyze equilibrium points of certain
classes of PLS, many important PLS cannot be analyzed this
way because either they have limit cycles or the method is com-
putationally too expensive.

An alternative to constructing Lyapunov functions in the state
space is to construct Lyapunov functions on switching surfaces.
Define then two quadratic Lyapunov functions on the switching
surfacesSd

0 andSa
1 . Respectively, letV0 andV1 be given by

Vi(x) = x
0
Pix� 2x0gi + �i (5)

wherePi > 0, for i = 0; 1. These are Lyapunov candidates
defined of the switching surfaces with parametersPi > 0, gi,
and�i, to be found.

Next, we want to show an impact map fromSd
0 � S0 to Sa

1 �

S1 is contracting in some sense. In particular, an impact map
is quadratically stable if there existPi > 0, gi, �i such that

V1(�1) < V0(�0) for all �0 2 S
d

0 � x
�

0 (6)

LetP > 0 onS stand forx0Px > 0 for all nonzerox 2 S. As a
short hand, we will be usingHt for H(t) andwt for w(t). The
following theorem takes advantage of the results from section 3
to derive a set of matrix inequalities equivalent to condition (6).



Theorem 4.1 Define

R(t) = P0 �H
0

tP1Ht � 2 (g0 �H
0

tg1)wt + w
0

t�wt

where� = �0 � �1. The impact map from�0 2 S
d
0 � x

�

0 to
�1 2 S

a
1 � x

�

1 is a contraction if there existP0; P1 > 0 and
g0; g1; � such that

R(t) > 0 on St � x
�

0 (7)

for all expected switching timest 2 T .

Basically, all this theorem does is substitute (2) in (6), and use
both facts that the map�0 to �1 is linear inSt and that, ast
ranges overT , St covers every point inSd

0 .

4.1 Approximation by a set of LMIs

There are many ways to approximate condition (7) with a set of
LMIs, which can be efficiently solved using available software.
By definition, condition (7) is equivalent to�0

0R(t)�0 > 0 for
all �0 2 St � x

�

0. A more conservative condition results when
�0 is relaxed:

�0

0R(t)�0 > 0 for all �0 2 S
d

0 � x
�

0

If this condition is satisfied then (7) follows sinceSt � S
d
0 . A

trivial way to obtain a set of LMIs is to further relax the con-
straints on�0. On one hand, this results in a more conservative
condition. On the other hand, such condition is computation-
ally efficient.

Corollary 4.1 The impact map from�0 2 S
d
0 � x

�

0 to �1 2

S
a
1 � x

�

1 is a contraction if there existP0; P1 > 0 andg0; g1; �
such that

R(t) > 0 on S0 � x
�

0 (8)
for all expected switching timest 2 T .

This result uses the ideas from the previous section to show that
the problem of quadratic stability of an impact map reduces to
the solution of a infinite dimensional set of LMIs. As shown in
several examples in [4] and [1], although condition (8) is more
conservative than (7), in many situations this is enough to ef-
ficiently and successfully globally analyze PLS. Condition (8)
can be written as an equivalent set of LMIs by noticing that
impact maps aren� 1-dimensional maps. See [1] for details.

It is possible to make condition (8) less conservative at a cost of
increase computations. This condition takes only into account
that�0 2 S0 � x

�

0. In [1], we explain how to approximate
condition (7) with less conservative sets of LMIs than (8).

4.2 Proof of Results

Proof of theorem 4.1: From (6) and using (2) and corol-
lary 3.1, we have

�0

1P1�1 � 2�0

1g1 + �1 < �0

0P0�0 � 2�0

0g0 + �0

, �0

0 (P0 �H
0

tP1Ht)�0 � 2�0

0 (g0 �H
0

tg1) + � > 0

for all �0 2 St � x
�

0. Finally, using (4) the result follows.

Proof of corollary 4.1: The result follows sinceSt � S0.

5 Global analysis of PLS
We have seen how global analysis of a single impact map can
be done using quadratic Lyapunov functions defined on switch-
ing surfaces. The next question is how to combine different

impact maps associated with a PLS to globally analyze the sys-
tem? There are several different issues that arise when ana-
lyzing PLS using quadratic surface Lyapunov functions. This
section explains the three main steps to globally analyze a PLS.
These consist on (1) characterization of impact maps, (2) def-
inition of quadratic Lyapunov functions at switching surfaces,
and finally (3) solution of stability conditions. These steps con-
sist on (see [1] for more details):

Step 1: Impact Maps

1. Identification of all impact maps associated with the PLS.
If the system hasm switching surfaces then there are at
the most2m2 impact maps. The actual number of impact
maps required to analyze the system is typically smaller
due to certain properties of a system, like symmetry (see
relay feedback systems [4] or saturation systems [1]) or
just the fact that not all switches are possible.

2. Characterization of domains of impact maps.
3. Necessary conditions. Certain conditions need to be

checked in order to guarantee that a trajectory, starting
in a switching surface, does not grow unbounded without
switching (as in the left of figure 1).

4. Linear decomposition. For each impact map, we need to
find anx�0 belonging to the switching surface where the
domain of an impact is defined, such that the assump-
tion of theorem 3.1 is satisfied. If this is not possible, the
switching times where the assumption is not satisfied need
to be characterized, and then proceed as explained in [3].

Step 2: Quadratic Surface Lyapunov Functions

1. Define all quadratic surface Lyapunov functions on the
respective domains of impact maps. There are at the
most2m Lyapunov functions, wherem is the number of
switching surfaces of the PLS.

2. Constraints on quadratic surface Lyapunov functions:
continuity issues, and limit cycles and equilibrium points.

3. Switching times and switching time bounds. For each im-
pact map, we have a quadratic inequality that must be sat-
isfied for all expected switching timesT associated with
the impact map. In many situations, however, it is not nec-
essary to check if a quadratic inequality is satisfied for all
t 2 T , but it is enough that this is true only on a bounded
subset ofT .

Step 3: Stability Conditions

1. Write stability conditions as LMIs using corollary 4.1, for
each impact map.

2. Improvements of stability conditions. If there is no fea-
sible solution to the LMIs described in the previous item,
we can use less conservative conditions (see [1]).

3. An alternative to solving all the LMIs described above is
to add LMIs until all quadratic constraints are satisfied,
since checking if a quadratic inequality is satisfied is much
easier than solving the correspondent LMIs.

Before attempting to analyze general classes of PLS with
quadratic surface Lyapunov functions using this algorithm, it is
important to fully understand in detail each of the steps in the
algorithm. For that purpose, we have analyzed several classes



of PLS by increasing order of complexity [4, 1]. Each of these
classes was carefully chosen to (1) separately deal with differ-
ent issues in each step of the algorithm and (2) to illustrate
with examples the efficiency of this new methodology. By
increasing complexity, we first analyzed relay feedback sys-
tems [4], then on/off systems [1], and finally saturation sys-
tems [1]. The success in globally analyzing a large number of
examples of these classes of PLS demonstrated the potential
of these new ideas in globally analyzing other, more complex
classes of PLS.

The reasons for analyzing these particular classes of PLS are
the following. In relay feedback systems [4], we analyzed limit
cycles. The choice to first analyze this class of PLS was based
on the fact that, for symmetric unimodal limit cycles, there is
only a single impact map that needs to be studied. This means
that global analysis of symmetric unimodal limit cycles of relay
feedback systems is simply a special case of theorem 4.1.

In the analysis of on/off systems [1], we explained (1) how
this new methodology is used to globally analyze equilibrium
points and (2) how more than one impact map is simultane-
ously analyzed. Finally, with saturation systems [1] we showed
how to deal with multiple switching surfaces.

Analysis of other, more complex classes of PLS can be done
using a combination of the ideas discussed above. A PLS can
have limit cycles or equilibrium points, and several switching
surfaces that may or may not contain equilibrium points or in-
tersect limit cycles. After a characterization of all relevant im-
pact maps, these can be simultaneously analyzed to conclude
about the stability the system. The main feature remains the
fact that quadratic stability of an impact map can be easily
checked by solving a set of LMIs, as explained in sections 3
and 4. The latest version of the above algorithm can be ob-
tained at [5].

6 Conclusions
Motivated by the need of better, more general, and more ef-
ficient global analysis tools for certain classes of hybrid sys-
tems, this paper developed an entirely new constructive anal-
ysis methodology for PLS usingimpact mapsand quadratic
surface Lyapunov functions. This methodology consists in in-
ferring global properties of PLS solely by studying their be-
havior at switching surfaces associated with PLS. The main
idea is to construct quadratic surface Lyapunov functions to
show that maps between switching surfaces are contracting in
some sense. These results are based on the discovery that maps
induced by an LTI flow between two switching surfaces can
be represented as linear transformations analytically parame-
terized by a scalar function of the state. Furthermore, level sets
of this function are convex subsets of linear manifolds. This
representation allows the search for quadratic Lyapunov func-
tions on switching surfaces to be done by simply and efficiently
solving a set of LMIs.

The success and power of this new methodology has been
demonstrated in globally analyzing equilibrium points and

limit cycles of several classes of piecewise linear systems
(PLS): relay feedback systems, on/off systems, and saturation
systems. A large number of examples of these classes of PLS
with a locally stable limit cycle or equilibrium point were suc-
cessfully globally analyzed using this analysis methodology. In
fact, it is still an open problem whether there exists an exam-
ple with a globally stable limit cycle or equilibrium point that
could not be successfully analyzed with this new methodology.
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